SUMMARY

Differentiation of naive CD4+ T cells into T helper (Th) cells is a defining event in adaptive immunity. The cytokines and transcription factors that control Th cell differentiation are understood, but it is not known how this process is orchestrated within lymph nodes (LNs). Here we have shown that the CXCR3 chemokine receptor was required for optimal generation of interferon-γ (IFN-γ)-secreting Th1 cells in vivo. By using a CXCR3 ligand reporter mouse, we found that stromal cells predominately expressed the chemokine ligand CXCL9 whereas hematopoietic cells expressed CXCL10 in LNs. Dendritic cell (DC)-derived CXCL10 facilitated T cell-DC interactions in LNs during T cell priming while both chemokines guided intranodal positioning of CD4+ T cells to interfollicular and medullary zones. Thus, different chemokines acting on the same receptor can function locally to facilitate DC-T cell interactions and globally to influence intranodal positioning, and both functions contribute to Th1 cell differentiation.

INTRODUCTION

CD4+ T cells play a central role in orchestrating adaptive immune responses. Naive CD4+ T cells are activated in draining lymph nodes (dLNs) by cognate antigen-loaded dendritic cells (DCs) where they differentiate into one of several lineages of helper T cell subsets, such as T helper type 1 (Th1), Th2, Th17, T follicular helper (Tfh), and induced T regulatory (iTreg) cells (Zhu et al., 2010). For example, Th1 cells secrete interleukin-2 (IL-2), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) and promote cellular immune responses mainly to intracellular pathogens and tumors. Differentiation into a particular helper subset is guided by extrinsic cytokine cues that induce lineage-specified transcription factors. Although the cytokines and transcription factors that control this process are relatively well understood, far less is known about how this process is temporally and spatially orchestrated within dLNs in vivo, where it initially takes shape.

CD4+ T cells require persistent antigen throughout their expansion to differentiate (Obst et al., 2005). Multiple successive phases of T cell priming have been described based on dynamic interactions between T cells and DCs in dLNs (Mempel et al., 2004; Miller et al., 2004). First, T cells sporadically interact with DCs, leading to an initial increase in T cell activation. Subsequently, T cells undergo sustained interactions with DCs, which are probably required to induce T helper cell differentiation. Diminished contact stability at this time leads to reduction in IFN-γ production in settings where Th1 cells are induced (Hugues, 2010). Finally, repeated engagements of DCs by the daughters of newly activated CD4+ T cells may also be required to optimally differentiate into IFN-γ-producing Th1 cells (Celli et al., 2005; Itano et al., 2003). The migration of priming T cells to different LN compartments during antigenic priming may expose T cells to different types of antigen-presenting cells (APCs) and provide them with unique differentiation cues. For instance, activated migratory and LN-resident DCs localize to different dLN regions, including the deep and the superficial paracortex, as well as the interfollicular T cell zones and medullary regions (Hickman et al., 2008; Itano et al., 2003; Tang and Cyster, 1999). In the course of this antigenic priming, T cells may redistribute to these peripheral regions of the LN, and once there may be exposed to other APC types or cytokine cues than those present in the deep paracortex (Hickman et al., 2008).

The induction of chemokine receptors is intertwined with CD4+ T cell differentiation. The differentiation of a particular helper subset instructs the upregulation of a specific set of homing receptors, which guide effector cells out of the lymphoid compartment and into otherwise restricted peripheral sites of inflammation (Bromley et al., 2008). How chemokines participate in the process of Th cell differentiation is not known but there are two likely possibilities. First, DCs may use chemokines to promote encounters with antigen-specific T cells (Friedman et al., 2006; Molon et al., 2005). Second, chemokines expressed in specific LN regions may influence more globally the intranodal positioning of priming T cells to particular microenvironments, to bring these cells in contact with the appropriate APCs or accessory cells important for their differentiation (Tang and Cyster, 1999).
CXCR3 is the receptor for the interferon-inducible chemokines CXCL9 (MIG), CXCL10 (IP-10), and CXCL11 (I-TAC). CXCR3 expression on activated T cells is important for the amplification of IFN-γ-dependent recruitment into peripheral sites of infection and autoimmune responses (Groom and Luster, 2011a). However, CXCR3 ligands are also expressed in dLNs during Th1 cell differentiation (Martín-Fontecha et al., 2004; Yoneyama et al., 2002).

We sought to determine the role of CXCR3 receptor-ligand interactions in CD4+ T cell differentiation in dLNs by using two models of CD4+ T cell priming to address the potential roles for this chemokine system described above: promoting DC-T cell interactions and intranodal positioning of T cells. The first model examined interactions of DCs and CD4+ T cells in the LN that induce Th1 cell polarization. In this model, antigen-pulsed DCs were injected subcutaneously into the footpad of mice from where they migrate into dLNs and interact with cognate antigen-specific T cells (Ingulli et al., 1997; Miller et al., 2004). The second model examined the global positioning of CD4+ T cells in the reactive LN required for optimal Th1 cell generation. Here, soluble antigen was introduced into peripheral tissue to mimic the physiological delivery of antigen to LNs via the lymph, where both migratory and resident DCs may influence T cell priming. To characterize chemokine expression in the dLNs, we developed a transgenic (Tg) mouse that reports the expression of both CXCL9 and CXCL10, called REX3 (reporting the expression of CXCR3 ligands). By using these in vivo models of immunization and REX3 Tg mice, we found that the CXCR3 system regulated the local interactions of antigen-specific CD4+ T cell with cognate antigen-loaded DCs in the LN, as well as the global intranodal positioning of CD4+ T cells after antigen-induced activation, both of which contribute to Th1 cell differentiation.

RESULTS

Rapid Upregulation of CXCR3 in CD4+ T Cells Correlates with IFN-γ Production

To study the in vivo development of Th1 cells, we first outlined the kinetics of CXCR3 upregulation by antigen-specific CD4+ T cells in LNs by using a controlled activated LN reaction (Figure 1A). Expanded DCs were pulsed with ovalbumin (OVA) protein activated with lipopolysaccharide (LPS) and poly(I:C) (Figure S1B available online) and subcutaneously transferred into the footpads of naive mice. Purified CD11c+MHC-II+ DCs contained both CD8+ and CD11b+ subpopulations; however, only CD11b+ cells successfully migrated to the LN (Figures S1A and S1C). At 24 hr after DC injections, mice were given naive OVA-specific CD4+ T cells isolated from OT-II Tg mice. At 2 hr after T cell transfer, CD62L blocking antibody was given to
CXCR3 and its ligands play an important role in the trafficking of effector Th1 CD4+ cells into inflamed peripheral tissues. However, CXCR3 is upregulated in dLNs well before T cell egress (Figure 1). Whether CXCR3 also influences the generation of Th1 cells is unknown. To investigate this, we cotransferred WT and Cxcr3−/− OT-II cells after DC injection. At 60 hr after T cell transfer, the frequency of IFN-γ-producing Cxcr3+/− OT-II cells was reduced by ~50% compared to WT OT-II cells (Figures 2A and 2B). A less pronounced but significant reduction was observed for IL-2 and TNF-α. Because no difference was seen in the overall numbers of WT and Cxcr3−/− cells in the dLN, this decrease in cytokine-producing cells translated into a decrease in the total number of polyfunctional cells (cells producing IL-2, TNF-α, and IFN-γ). To examine the expression of CXCR3 ligands at times relevant to Th1 cell differentiation, we first examined the upregulation of Cxcl9 and Cxcl10 by RNA analysis of whole draining and nondraining LNs during our activated DC transfer LN model. Both ligands were highly upregulated in dLNs, whereas they remained minimally expressed in non-dLNs (Figures S3C and S3D).

CXCR3 Is Required for Optimal Th1 Cell-Associated Cytokine Production and Activation of OT-II Cells

The decrease in IFN-γ+ cells seen in the Cxcr3−/− population was due to competition for interactions with DCs, naive WT or Cxcr3+/− OT-II cells transferred into separate DC-injected hosts and assessed for effector cytokine production. In this competitive setting, Cxcr3−/− OT-II cells displayed the same reduced frequency of IFN-γ+ cells as seen in the cotransfer experiments (Figures S2A and S2B).

To eliminate the requirement for cells to migrate toward OVA-pulsed DCs, WT and Cxcr3−/− OT-II cells were cocultured and differentiated in vitro. In this condition, the cells producing IFN-γ were evenly split between the T cells of each genotype (Figure S2C), indicating that there was a unique requirement for Cxcr3 expression in vivo. Although the numbers of WT and Cxcr3−/− OT-II cells present in the dLNs was comparable, a possible defect in proliferation could account for decreased production of polyfunctional Th1 cells in the Cxcr3−/− OT-II cells. However, carboxymethyl fluorescein diacetate (CMFDA) dilution profiles of WT and Cxcr3−/− OT-II cells were overlapping 60 hr after T cell transfer, when cell entry into the LN was or was not blocked with CD62L antibody treatment (Figure 2E). To ensure that differences in IFN-γ production by Cxcr3−/− OT-II cells were not due to differences in their egress from dLNs into peripheral tissues (Yoneyama et al., 2002), mice were either left untreated, treated with CD62L blocking antibody as above, or treated with both CD62L antibody and FTY720, which induces the sequestration of T cells in lymphoid organs by modulating S1P1 and inhibiting LN T cell egress (Matloubian et al., 2004). Neither blocking T cell egress nor allowing continued T cell entry into dLNs altered the decrease in effector cytokine production seen in Cxcr3−/− cells compared to WT OT-II cells (Figure 2F). Finally, we performed a kinetic experiment of IFN-γ production. Although the maximum frequency of IFN-γ-producing cells varied throughout analysis (Figures S1D and S1E), at each time point cotransferred Cxcr3−/− cells demonstrated a similar decrease in IFN-γ production compared to WT OT-II cells (Figure 2G). Collectively, these data show that CXCR3 expression is important for optimizing Th1 CD4+ cell responses. This effect was not observed in vitro and was not related to proliferation, different kinetics of IFN-γ expression, or early egress of Cxcr3−/− T cells from LNs.

Both CXCR3 Ligands Are Induced in dLNs during Th1 Cell Differentiation

Given the role for CXCR3 on CD4+ T cells during their differentiation to Th1 effector cells, we investigated the expression of CXCR3 ligands during inflammatory LN reactions. We focused on the CXCR3 ligands Cxcl9 and Cxcl10, because the third CXCR3 ligand, Cxcl11, is not expressed in C57BL/6 mice at the protein level as demonstrated by immunoblot (Figures S3A and S3B) as a result of a frame shift mutation (Sierra et al., 2007). To examine the expression of CXCR3 ligands at times relevant to Th1 cell differentiation, we first examined the upregulation of Cxcl9 and Cxcl10 by RNA analysis of whole draining and nondraining LNs during our activated DC transfer LN model. Both ligands were highly upregulated in dLNs, whereas they remained minimally expressed in non-dLNs (Figures S3C and S3D).

CXCL10 Expression by Antigen-Presenting DCs Is Important for Th1 Cell Differentiation

CXCL9 and CXCL10 have been observed in various models to display overlapping as well as unique functions (Groom and Luster, 2011b). In this regard, it has been unclear which, if any, of the CXCR3 ligands is the major contributor toward promotion of Th1 cell differentiation. Expanded WT, Cxcl9−/−, and Cxcl10−/− DCs were pulsed and activated as described above and injected into naive mice. At 60 hr after OT-II T cell transfer, DCs expanded from Cxcl10−/− cells were not capable of supporting the induction of IFN-γ+TNF-α+ producing OT-II cells. In contrast, Cxcl9−/− DCs were as capable as WT DCs in inducing IFN-γ+TNF-α+ producing OT-II cells (Figures 3A and 3B). Of note, OT-II T cell IFN-γ production in mice receiving Cxcl10−/− DCs was reduced to a greater degree than Cxcr3−/− T cells cotransferred with WT T cells (Figure 2). This may be due to an additional influence of DC-derived CXCL10 on host accessory cells such as natural killer (NK) cells and plasmacytoid dendritic cells (pDCs), which express CXCR3 and are known to influence Th1 cell differentiation (Martín-Fontecha et al., 2004; Yoneyama et al., 2004). To eliminate other intrinsic defects in Cxcl10−/−

Immunity 37, 1091–1103, December 14, 2012 ©2012 Elsevier Inc. 1093
DCs, we determined that these cells were capable of migrating to dLNs and facilitating the early upregulation of CD25 on OT-II cells in vivo and inducing IFN-\(\gamma\) production in vitro to the same degree as WT and Cxcl9\(^{-/-}\)/Cxcl10\(^{-/-}\) DCs (Figures S3E–S3G).

Generation of REX3 Transgenic Mice

Although RNA analysis of whole dLNs (Figures S3C and S3D) established that CXCL9 and CXCL10 are expressed at times relevant to Th1 cell differentiation in vivo, it offered little information on the precise timing, location, and cell types expressing these ligands. Therefore, we generated a reporter mouse in which spectrally distinct fluorescent reporter proteins (FPs) report the RNA expression of the CXCR3 ligands Cxcl9 and Cxcl10. To allow reporting of the expression of CXCR3 ligands (REX3) Tg mice, we inserted red fluorescent protein (RFP) at the start codon of Cxcl9 and inserted blue fluorescent protein (BFP) at the start codon of Cxcl10 in a CXCR3-ligand-containing bacterial artificial chromosome (BAC) (Figures 3C and S3H). Accurate reporting of Cxcl9 and Cxcl10 expression was confirmed by correlating the induction of RNA transcripts and protein with induction of FPs in stimulated REX3 Tg DCs (Figures S3J–S3L). CXCL9 immunostaining in REX3 Tg dLNs correlated with the expression of the Cxcl9-RFP reporter, indicating that most of the chemokine protein detected is presented...
Chemokine-Expressing DCs Display Increased Activation

To visualize the expression of CXCL9 and CXCL10 by transferred, antigen-presenting DCs throughout the inflamed LN model, REX3 Tg DCs were pulsed with antigen, activated, and CMFDA labeled prior to subcutaneous footpad injections into WT mice. CMFDA+ DCs were then tracked to assess reporter expression (Figure 3D). The majority of transferred DCs expressed both CXCL9-RFP and CXCL10-BFP within 12 hr of T cell transfer. In addition, smaller populations of CXCL10-BFP single expressers and double-negative DCs were detected, but single-positive CXCL9-RFP DCs were never observed. The frequency of cells in each of these populations remained stable throughout the time course (Figure 3D). We assessed whether there were any activation differences between DCs expressing REX3+ FPs and those without expression. Although no difference was seen in expression of major histocompatibility complex (MHC) class II between these populations, REX3+ DCs (dually expressing CXCL9-RFP and CXCL10-BFP) had increased expression of the activation markers CD40 and CD86 compared to DCs without reporter expression (Figure 3E). Thus, identifying chemokine reporter cells allowed us to observe that both CXCL9 and CXCL10 are expressed by DCs at times relevant to Th1 cell differentiation and that this expression correlates with increased activation of APCs.

Cxcr3−/− OT-II Cells Display Altered Behavior in dLNs during CD4+ T Cell Priming

In vitro, production of CXCR3 ligands by DCs enhances their ability to attract T cells (Padovan et al., 2002). We therefore tested whether this might be relevant in vivo. The use of multiphoton microscopy (MP-IVM) has revealed that the duration of T cell-DC interactions correlates with efficient T cell priming and IFN-γ production (Hugues, 2010). To gain insight into why Cxcr3−/− OT-II CD4+ T cells do not optimally differentiate into Th1 cells, we characterized their in vivo movements via MP-IVM. When draining popliteal LNs were surgically exposed, transferred REX3 Tg DCs could be visualized. However, CXCL9-reporting RFP photo-bleached rapidly, leading to visualization of transferred DCs solely through BFP expression in time-lapse recording. At 6 to 8 hr after i.v. cotransfer of labeled WT and Cxcr3−/− OT-II T cells, both populations were capable of forming stable contacts with DCs (Figures 3F and 3H). However, although WT cells were almost uniformly engaged in stable contacts, as reflected by low migratory velocity, low confinement ratio, and high arrest coefficients (Figure 3G), a 3- to 4-fold larger fraction (~30%) of Cxcr3−/− cells compared to WT cells failed to form long-lasting interactions (Figure 3G). Even 24 hr after transfer, when both T cell populations had resumed motile behavior, Cxcr3−/− OT-II cells were less confined in their migration (Figure S4). Analysis of the contacts of T cells with CXCL10-BFP-expressing DCs showed that the majority of Cxcr3−/− OT-II cells did not visibly engage with these cells (Figures 3H and 3I). When the length of short-lived DC-T cell interactions was assessed, contact times of Cxcr3−/− OT-II cells with REX3+ DCs were indeed shorter than those of WT OT-II cells (Figures 3F, 3H, and 3I). Combined, data generated by transfer of antigen-pulsed DCs established that Cxcr3−/− CD4+ cells cannot maximally differentiate into IFN-γ+ Th1 cells, which correlated with their reduced ability to interact with CXCL10-expressing antigen-presenting DCs.

Immunization Requires Cxcr3 for Optimal Th1 Cell Differentiation

Thus far, our results addressed the requirement for CXCR3 ligands produced by CD11b+ antigen-presenting DCs in the dLN; however, CXCL9 and CXCL10 are expressed by multiple hematopoietic and stromal cells residing within dLNs (Gattass et al., 1994; Martín-Fontecha et al., 2004). We therefore investigated whether chemokines produced by these cells were also important for optimal Th1 cell responses, reasoning that immunization with soluble antigen may correlate more with vaccination strategies than the transfer of antigen-pulsed DCs. For these studies, naive host mice were immunized with OVA protein with LPS and poly(I:C) subcutaneously. After 24 hr, mice were cotransferred with naive WT and Cxcr3−/− OT-II cells, which were assessed for the production of IFN-γ and TNF-α 60 hr after T cell transfer (Figure 4A). As seen with transferred antigen-pulsed DCs (Figure 2), after immunization with soluble antigen, CXCR3 ligand-receptor interactions were required for efficient differentiation of OT-II cells toward a Th1 cell phenotype (Figures 4B–4D).

We next used REX3 Tg mice as hosts in this model to identify the pattern of expression of CXCL9 and CXCL10 in dLNs. In unimmunized REX3 Tg mice, popliteal LNs showed little expression of either CXCL9-RFP or CXCL10-BFP (Figure 4E). However, during the inflamed LN reaction, expression was greatly increased, peaking at 24–36 hr after T cell transfer, before declining again at 60 hr (Figure 4F). Surprisingly, although some double-positive staining was observed, it appeared that CXCL9 and CXCL10 had strikingly different expression patterns. CXCL10 was primarily expressed in the LN medulla, the site into which the most of the lymph and lymph-borne antigens drain. Meanwhile, the strongest CXCL9-RFP expression was seen in interfollicular areas. These areas serve as transit corridors for lymphocytes migrating into and out of T cell areas and are also areas where T cells may survey DCs. In contrast, only scattered single- and dual-expressing cells for each chemokine were seen in the T cell zone where T cell-DC interactions are traditionally thought to occur (Figure 4F; Ingulli et al., 1997; Tang and Cyster, 1999). During the time course undertaken, there was minimal expression of either CXCR3 ligand inside B cell follicles (Figure 4F). These expression data from the REX3 Tg mice suggest the development of dramatic chemokine gradients in different regions of dLNs after immunization.

Nonredundant Roles for CXCL9 and CXCL10 in Th1 Cell Differentiation after Immunization

To investigate the patterns of chemokine expression further, we examined BM chimeras with REX3 Tg BM being transferred into irradiated WT hosts or vice versa. Strikingly, the majority of CXCL10-BFP expression was in the BM-derived hematopoietic compartment (Figure 5A). In contrast, CXCL9-RFP was...
Figure 3. DC-Derived CXCL10 Optimizes Th1 Cell Responses and Identification of Chemokine-Expressing DCs during T Cell Priming

(A and B) Pulsed WT, Cxcl9^−/−, and Cxcl10^−/− DCs were transferred to hosts prior to OT-II T cells. 60 hr after T cell transfer, dLN T cells were harvested.

(A) Plots of IFN-γ and TNF-α production of WT OT-II cells activated by DCs of indicated genotype.

(B) Frequency of TNF-α+IFN-γ+ WT OT-II cells activated by WT (black), Cxcl9^−/− (open), or Cxcl10^−/− (gray) DCs.

(C) Schematic of REX3 Tg construct indicating insertion of RFP into the Cxcl9 locus and BFP into the Cxcl10 locus of the RP-24-164O11 BAC. Open box, noncoding exons; black box, coding exons of Cxcl9 and Cxcl10 genes; red box, RFP ORF; blue box, BFP ORF; striped box, SV40 poly(A) site; FRT Flippase Recognition Target and loxP Cre recombinase site.

(D) CMFDA-labeled DCs expanded from REX3 Tg were pulsed, stimulated, and injected into WT mice. Plot and bar graph indicating frequency of REX3-negative (open), CXCL10-BFP only (gray), and CXCL10-BFP and CXCL9-RFP double-positive (stripe) DCs.
predominantly expressed by the radio-resistant stromal cells located in the interfollicular and medulla areas of the dLN (Figure 5B).

We next assessed the role of each chemokine in CD4+ T cell responses by using ligand-deficient mice after immunization. Surprisingly, both CXCL9 and CXCL10 were nonredundantly required for optimal Th cell differentiation after immunization (Figures 5C and 5D). This was in contrast to the DC transfer model, where only CXCL10-expressing antigen-pulsed DCs were required for maximal Th1 cell differentiation (Figures 3A and 3B). To determine which compartment was primarily required for maximum induction of Th1 cell differentiation, given the difference in expression of CXCL9 and CXCL10 seen in REX3 Tg BM chimeras, we immunized BM chimeric mice generated with WT, Cxcr9−/−, or Cxcl10−/− BM transplanted into irradiated WT mice. WT host mice reconstituted with Cxcl10−/− BM showed a defect in Th1 cell differentiation, whereas mice containing WT stromal cells with Cxcl9−/− hematopoietic cells were capable of maximal induction of IFN-γ+TNF-α+ cells (Figure 5E). Finally, we performed BM chimera experiments where WT BM was used to reconstitute irradiated WT, Cxcl9−/−, or Cxcl10−/− mice. In this setting, mice lacking either stromal-derived CXCL9 or CXCL10 displayed reduced numbers of IFN-γ+TNF-α+ T cells (Figure 5F). These data correlate with the expression data (Figures 5A and 5B) and demonstrate that CXCL10 produced by the hematopoietic compartment is critical, and both CXCL9 and CXCL10 produced by stromal cells are important.

CXCL9 and CXCL10 Gradients Promote Peripheralization of T Cells in the LN

Because the majority of chemokine-expressing cells were located peripheral to the T cell zone, we asked whether, after immunization, antigen-specific CD4+ T cells migrate out of the T cell zone toward these areas in a CXCR3-dependent manner. We therefore investigated the intranodal location of WT and Cxcr3−/− OT-II cells in the T cell zone, interfollicular zone surrounding B cell follicles, or in the LN medulla (as described in Figure S5) before and after immunization. In unimmunized mice receiving either WT or Cxcr3−/− OT-II cells, transferred cells were predominantly located in the T cell zone (Figure 6A). In immunized hosts, 24–36 hr after T cell transfer, WT cells were located in the interfollicular and medulla regions, whereas the majority of Cxcr3−/− OT-II cells remained in the T cell zone (Figure 6A). Again, in unimmunized mice, cotransferred WT and Cxcr3−/− OT-II cells were similarly located in the T cell zone. After immunization, compared to Cxcr3−/− OT-II cells, WT OT-II cells had a greater propensity to move into the periphery of the dLN, where CXCR3 ligands were highly expressed (Figures 6B, 6C, and 4F). We next investigated the localization of WT OT-II cells in immunized WT, Cxcl9−/−, or Cxcl10−/− hosts. WT OT-II cells were similarly located in the T cell zone in unimmunized WT, Cxcl9−/−, and Cxcl10−/− hosts (Figures 6D and 6E). At 24–36 hr after T cell transfer into immunized hosts, WT OT-II cells in WT hosts migrated from the T cell zone into the peripheral regions of the dLN (Figures 6D and 6E). However, WT OT-II cells transferred into Cxcl9−/− hosts remained in the T cell zone, but showed some migration toward the medullary region, where predominantly CXCL10 was induced (Figures 6D, 6E, and 4F). WT OT-II cells transferred into Cxcl10−/− hosts also remained in the T cell zone, but conversely showed some migration toward the interfollicular areas of the dLN, where predominantly CXCL9 was induced (Figures 6D, 6E, and 4F). Combined, these data highlight the importance of intranodal migration during Th1 cell responses and the requirement for CXCR3 ligands, expressed by hematopoietic and stromal cells, in directing movement of T cells out of the T cell zone of dLNs for maximal Th1 cell differentiation.

CXCR3 Receptor-Ligand Interactions Promote Th1 Cell Differentiation in Response to Viral Infection

Although the DC transfer and immunization protocols outlined above allow for the discrimination of factors important for the differentiation of Th1 cells during a synchronized T cell response, it remained to be determined whether these mechanisms are relevant during a response to an intracellular pathogen, such as lymphocytic choriomeningitis virus (LCMV), that induces a strong Th1 cell-type immune response (Varga and Welsh, 2000). To address this, we evaluated the endogenous antigen-specific CD4+ T cell response in WT, Cxcl9−/−, Cxcl10−/−, or Cxcr3−/− mice at the peak of acute LCMV infection. T cells responding to the dominant CD4+ T cell epitope for LCMV were detected with MHC II-restricted gp66 tetramers (Figure 7A; Moon et al., 2011; Oxenius et al., 1995). Within the gp66tet+CD4+...
population, the frequency of IFN-γ+TNF-α+ cells was determined. Endogenous LCMV-specific CD4+ T cells in Cxcl9−/− and Cxcl10−/− mice displayed a deficiency in maximal Th1 cell differentiation (Figures 7B and 7C). IFN-γ production by gp66tet+CD44+ cells in Cxcr3−/− mice was even further reduced, suggesting that CXCR3 was required on cells other than CD4+ for Th1 cell responses. To determine the importance of CXCR3 exclusively on CD4+ cells, the frequency of IFN-γ+TNF-α+ cells after LCMV infection was examined in mixed BM chimeras where WT and Cxcr3−/− BM was used to reconstitute irradiated Rag1−/− mice. Again, Cxcr3−/−-antigen-specific CD4+ T cells displayed a reduced frequency of IFN-γ production, compared to WT cells in the same hosts (Figures 7D and 7E). Together, these data validate our immunization models, indicating that CXCR3 receptor-ligand interactions optimizes Th1 cell differentiation during a response to a natural infectious pathogen.

DISCUSSION

The differentiation of naive CD4+ T cells into Th cell subsets in LNs draining sites of infection and inflammation determines the type (e.g., Th1, Th2, Th17) of immune response that a pathogen or foreign antigen will elicit. We chose to study the CXCR3 chemo- kine system in Th1 cell development because of all the chemokine receptors, CXCR3 is most associated with Th1 cells (Groom and Luster, 2011a). Expression of CXCR3 by newly activated CD4+ T cells correlated with their ability to produce IFN-γ and was required for optimal effector cytokine responses. Our
CXCR3 and Th1 Cell Generation in the Lymph Node

Figure 5. CXCL9 and CXCL10 Have Nonredundant Roles in Promoting OT-II Cell IFN-γ Responses after Host Immunization

(A and B) BM chimeras created with (A) REX3 Tg BM into WT hosts and (B) WT BM into REX3 Tg hosts. Reconstructed mice were immunized and transferred with OT-II cells, 24–36 hr after T cell transfer, dLNs reporter protein expression (CXCL9-RFP, red; CXCL10-BFP, blue; B220 and CD19 immunostaining, white). Scale bars represent 500 µm. Higher magnification images are from regions indicated (1, 2, 3).

(C) WT, Cxcr3−/−, and Cxcl10−/− host mice were immunized into the footpad 24 hr prior to adoptive transfer of WT OT-II cells. At 60 hr after T cell transfer, dLNs were harvested and restimulated to assess cytokine production. Plots of IFN-γ and TNF-α production by WT OT-II cells transferred into WT, Cxcr3−/−, or Cxcl10−/− hosts.

(D) Frequency of TNF-α/IFN-γ+ transferred OT-II cells in WT (black), Cxcr3−/− (open), and Cxcl10−/− (gray) hosts 60 hr after immunization.

(E) BM chimeras of WT hosts reconstituted with WT (black), Cxcr3−/− (open), Cxcl10−/− (gray) BM. Chimeras were immunized and transferred with WT OT-II cells. At 60 hr after T cell transfer, dLNs were harvested to assess cytokine production. Fold change of frequency of TNF-α/IFN-γ+ transferred cells in indicated BM chimeras is shown.

(F) BM chimeras of WT (black), Cxcr3−/− (open), Cxcl10−/− (gray) hosts reconstituted with WT BM. As in (E), dLN cytokine production. Fold change of frequency of TNF-α/IFN-γ+ transferred cells in indicated BM chimeras is shown. Data are representative of two to three independent experiments (n = 4–8). Error bars denote SD.
present in the subcapsular sinus (SCS) and the interfollicular and medulla regions of dLNs efficiently trap antigen after lymph-borne viral challenge (Hickman et al., 2008; Iannacone et al., 2010). Importantly, loss of these macrophages results in reduced type I IFN production, suggesting a potential stimulus for CXCL9 and CXCL10 production after infection (Iannacone et al., 2010). Therefore, CXCR3 upregulation by recently activated T cells allows them to move to areas where they are poised to interact with antigen-presenting SCS macrophages or DC subsets, potentially providing T cells increased antigen stimulation and/or unique cytokine signals (Hickman et al., 2008).

Several studies have indicated the importance for CD8+ T cells to leave the T cell zone and migrate into peripheral LN areas to interact with pathogen-loaded APCs (Hickman et al., 2008). Our study has expanded on these findings indicating that this process of intranodal relocation is also important for the development of Th1 CD4+ cells. In addition, we now have shown that this movement is regulated by the ligands for CXCR3, and with the REX3 Tg mouse, we have identified the location and cell types expressing the chemokines responsible for this redistribution. Thus, our data suggest that the CXCR3 chemokine system is a key mediator of T cell peripheralization in the reactive environment.
LN after infection and immunization. Because CXCL10 is induced by TLRs and type I interferon, our data offer an explanation for why pathogen-activated macrophages and DCs in the LN periphery produce CXCL10 leading to the subsequent peripheralization of T cells. Further, as has been demonstrated in peripheral tissue (Groom and Luster, 2011a; Nakanishi et al., 2009), IFN-γ brought to these regions by early T cell emigrants probably amplifies the recruitment signal through the induction of CXCL9 and more CXCL10.

Because Cxcr3 is a direct transcriptional target of T-bet (Tbx21), it is likely that our findings extend to cell fate decisions between effector and memory differentiation. Recently, CD4+ T cells lacking T-bet have been described to preferentially differentiate into memory cells (Marshall et al., 2011; Pepper et al., 2011). Our study offers an explanation for these findings, suggesting that T-bet-dependent CXCR3 expression predisposes cells to become effector CD4+ Th1 cells, as opposed to memory cells. Similar observations have recently been made for CD8+ T cells where Cxcr3-deficient CD8+ T cells locate to different areas of the spleen and preferentially become memory cells over effectors (Hu et al., 2011; Kohlmeier et al., 2011; Kurachi et al., 2011).

Our findings thus demonstrate unique spatial requirements for CD4+ T cells during differentiation, which could have important implications in the design of potent Th1 cell-inducing vaccines. Our results, as well as the tools used to obtain them, lay the foundation for future studies aimed at identifying other factors that regulate Th1 cell responses in dLNs and peripheral inflamed tissues and at assessing the importance of the CXCR3 chemokine system in T cell fate decisions. Indeed, the development of the REX3 Tg mouse should be a valuable tool for the analysis of productive immune responses against infectious pathogens and for the rational design and analysis of vaccines.

EXPERIMENTAL PROCEDURES

Mice
C57BL/6 (BL/6), CD90.1, and OT-II mice were obtained from Jackson Laboratory. REX3 Tg mice in the C57BL/6 background were generated in our laboratory. All mice, including Cxcr3−/− (Hancock et al., 2000), Cxcl9−/− (Park et al., 2002), and Cxcl10−/− (Dufour et al., 2002) mice in the C57BL/6 background were housed under specific-pathogen-free conditions. All infectious work was performed in designated BL2+ workspaces. All procedures were approved by the Massachusetts General Hospital Subcommittee on Research and Animal Care or by Harvard Committee on Microbiological Safety. See Supplemental Experimental Procedures for details of other mouse strains used.

Cell Preparation and Immunizations
DCs were CD11c+ purified (Miltenyi) from mice implanted with Flt-3L B16 cells and pulsed with 10 μM OVA protein (Worthington) for 1 hr prior to 1 μg/ml LPS and poly(I:C) (InvivoGen) prior to injection of 5 × 10^6 DCs into the footpad. Mice were immunized with 20 μg/ml OVA with 1 ng/ml LPS and poly(I:C) (InvivoGen) for another 1 hr. Tracked cells were labeled for 15 min at 37°C with 2 μM chloromethylfluorescein diacetate (CMFDA; Molecular Probes) prior to injection of 3 × 10^6 BM cells into the footpad. Mice were immunized with 5 × 10^6 BM cells into the footpad. Mice were immunized with 20 μg/ml OVA with 1 ng/ml LPS and poly(I:C). 24 hr after DC transfer or immunization, mice were given immunomagnetic selected 5 × 10^6 CD4+CD62L+ (Miltenyi) T cells prepared from OT-II mice. To synchronize T cell responses, animals received 100 μg CD62L monocular antibody Mel-14 (100 μg per mouse; BioXcell). To block T cell egress, 1 mg/kg FTY720 (Cayman

Figure 7. CXCR3 Is Required for Maximal Endogenous Antigen-Specific Th1 Cell Differentiation during Infection

(A–C) 8 days after i.v. LCMV infection, splenocytes from mice were harvested, restimulated, and tetramer enriched for detection of (A) LCMV gp66 tetramer-specific cells and (B, C) IFN-γ and TNF-α production. (D and E) BM chimeras of mixed WT and Cxcr3−/− BM in Rag1−/− hosts were infected with LCMV and harvested for detection of IFN-γ and TNF-α production from LCMV-tetramer-positive cells. Data are representative of two independent experiments (n = 4). Error bars denote SD.

Immunity 37, 1091–1103, December 14, 2012 ©2012 Elsevier Inc. 1101
Chemicals was given i.p. 12 hr after T cell transfer. For imaging and localization experiments, transferred cells were either labeled with CMFDA or CMTRF as above, or alternatively Actin-GFP or Actin-RFP crossed to OT-II Tg mice were used.

Generation of REX3 Tg Mice

Targeting constructs for Cxcr9-RFP and Cxcl10-BFP were inserted into the RP24-164011 BAC (CHORI), which contained the Cxcr9 and Cxcl10 genes. See Supplemental Experimental Procedures for details.

Cell Isolation and Flow Cytometry

Popliteal (draining) and brachial (nondraining) LNs were harvested, pooled, and massaged with tweezers to single-cell suspensions. For staining antibodies, see Supplemental Experimental Procedures. For analysis of polyclonal T cell responses, cells were incubated with 20 μg/mL OVA (323-339) peptide (Peptides International) and 2 μg/mL sCD28 (Biolegend). After 1 hr, 10 μg/mL Brefeldin A (GojiPlug; BD Biosciences) was added for an additional 3 hr. After surface staining, cells were fixed and permeabilized with Fix&Perm kit (Invitrogen) and stained for intracellular cytokines. Cells were resuspended in FACS buffer (2% FCS in PBS) and acquired on an LSR Fortessa flow cytometer (BD Biosciences) and analyzed with FlowJo software (Tree Star).

Immunofluorescence Staining

LNs were harvested into PLP buffer (0.05 M L-lysine [pH 7.4], 2 mg/mL NaOAc, 10 mg/mL paraformaldehyde), fixed for 5–12 hr, and dehydrated in 30% sucrose prior to embedding in OCT freezing media (Sakura Fineteck). 16 μm frozen sections were cut on a CM3050S cryostat (Leica). Sections were blocked in PBS containing 0.1% Triton X-100 (Sigma) and 10% goat serum (Jackson Immunoresearch) and stained in PBS (0.01% Triton X-100 and 5% goat serum). Images were acquired on a LSM510 confocal microscope (Carl Zeiss Microimaging). T cell regions were identified and labeled via immunostaining of B cell follicles and LN architecture, as described in Figure S5. Regions and cells were defined with IMARIS image analysis software (Bitplane), and center point spots were included in snapshot images.

LCMV Infection and Detection of gp66† Tetramer-Positive Cells

Mice were given 10⁶ focus forming units of (Armstrong LCMV) i.v. 8 days prior to harvest. Splenocytes from LCMV-infected mice were restimulated with gp61-80 (AnaSpec) for 4 hr in the presence of Brefeldin A. Tetramer+ cells were identified and labeled via immunostaining of B cell follicles and LN architecture, as described in Figure S5. Regions and cells were defined with IMARIS image analysis software (Bitplane), and center point spots were included in snapshot images.

Multiphoton Intravital Microscopy and Image Analysis

Performed as previously described (Mempel et al., 2004) and in Supplemental Experimental Procedures.

Statistical Analysis

Paired two-tailed Student’s t tests were used for data analysis and generation of p values, for experiments when T cells from WT and REX3 Tg mice were cotransferred (GraphPad Software). ANOVA with post-tukey test for multiple comparisons was used for experiments comparing more than two samples. p is shown for all significant (p < 0.05) analyses. All data are represented as mean with individual data points representing individual samples and time course data show mean with standard error of the mean (SEM) error bars. Bar graph data show standard deviation error (SD) bars.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, five figures, and one movie and can be found with this article online at http://dx.doi.org/10.1016/j.immuni.2012.08.016.

ACKNOWLEDGMENTS

Work was supported by the NIH grants CA069212 (to A.D.L.) and AI078897 (to U.H.v.A.). J.H.S. was supported by the NH&MRC, Australia (Fellowship 516791). J.H.S. was supported by a Samsung Scholarship. We thank D. Alvarez for assistance with LCMV infections, J. Farber for the Cxcr9-/- breeding pair, and C. Gerard for the Cxcr3-/- breeding pair.

Received: June 6, 2012
Accepted: August 29, 2012
Published online: November 1, 2012

REFERENCES

CXCR3 and Th1 Cell Generation in the Lymph Node

