Iain Drummond, PhD

Drummond Laboratory

The Iain Drummond Laboratory studies kidney organogenesis using the zebrafish to explore conserved molecular mechanisms underlying vertebrate kidney cell differentiation, morphogenesis, ciliogenesis, and regeneration.


We study kidney organogenesis using the zebrafish to explore conserved molecular mechanisms underlying kidney cell differentiation, morphogenesis, and regeneration. We also study organ pathologies that results from mutations in genes required for cilia biogenesis and function. These include kidney cystic disease, retinal degeneration and left-right asymmetry defects.

Research Projects

The zebrafish pronephros as a model of the vertebrate kidney

As part of the Boston large-scale forward genetic screens on zebrafish, we defined zebrafish pronephric kidney development and cell structure, generated assays for nephron function, and characterized fifteen different mutant loci that caused kidney cyst formation and altered epithelial membrane protein targeting. Current work examines novel kidney mutants using Next-gen sequencing to rapidly map causative mutations.

Cell signaling in kidney development and patterning

Functionally distinct kidney cell types often exist right next to each other however the developmental mechanisms driving this patterning was unknown. We showed that "salt and pepper" patterns of cell types in the zebrafish kidney are generated by Notch signaling. We went on to show that altering kidney nephron patterning by modifying Notch signaling altered kidney function. We have also defined roles for the transcription factors pax2 and osr1 in nephron segment patterning and tubule vs. endothelial cell fate. Our current work focuses on using genetically encoded fluorescent biosensors to probe cell signaling during glomerular development and capillary development.

Kidney morphogenesis and epithelial cell dynamics

The kidney convoluted proximal tubule is specialized for interaction with the kidney vasculature and segment boundary positions are tightly regulated however little was known about morphogenetic processes that control nephron development. Using live, in vivo imaging in transparent zebrafish embryos, we showed that nephron morphogenesis is driven by collective cell migration that generates proximal convolutions and defines the final position of nephron segment boundaries. Also, we showed that cell migration was signaled by the onset of nephron filtration and luminal fluid flow, linking nephron morphogenesis with nephron function. We have also used live imaging to describe tubule interconnection in the developing mouse kidney and we have shown that cell migration plays a primary role in responses to kidney injury.

Primary Ciliary Dyskinesia (PCD)

Primary Ciliary Dyskinesia (PCD) is a genetic disorder affecting 1 in 15,000 births that causes cilia paralysis with left-right organ asymmetry defects, bronchiectasis, sinusitis, and infertility. Using an unbiased forward genetic approach and targeted reverse genetic approaches in zebrafish, we cloned novel cilia paralysis genes, (schmalhans / ccdc103, C21orf59, and CCDC65) and went on to show that human patient families with PCD carried mutations in orthologous human genes, identifying novel causes of PCD. A key element of this work was developing an in vivo assay to test the pathogenicity of candidate human disease alleles by mRNA injection and rescue of the zebrafish phenotype. This work established the fish as an in vivo assay system for distinguishing pathogenic human gene mutations from benign sequence polymorphisms. We have also used fish genetics to reveal new cilia mediators of tubulin post-translational modification and new insights into physiological regulation of ciliogenesis.

Kidney regeneration from adult tissue stem cells

The zebrafish has a remarkable capacity to generate new nephrons from stem cells following renal injury. To restore kidney function, filtering nephrons must connect to a tubule network to pass fluid. How cells rearrange and form new connections is not known. We are using the regenerating zebrafish kidney as a model to discover how tubule interconnections are made and to uncover signals that drive cell rearrangments required to "plumb" the kidney. Knowledge of these signals will be an important part of the molecular toolbox for growing new organs.


Recent Publications

Drummond I.A., Majumdar A. Hentschel H., Elgar M., Solnica Krezel L., Schier A., Neuhauss S., Stemple D., Zwartkruis F., Rangini Z., Driever W. and Fishman M.C.. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 1998; 125:4655-4667.

Liu, Y., Pathak, N., Kramer-Zucker, A. and Drummond, I.A. 2007. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development, 134:1111-22.

Vasilyev, A., Liu, Y., Hellman, N., Pathak, N. and Drummond, I.A. 2012. Mechanical stretch and PI3K signaling link cell migration and proliferation to coordinate epithelial tubule morphogenesis in the zebrafish pronephros. PLOS One 7(7):e39992. PMC3399848

Panizzi, J.R., Becker-Heck, A., Castleman, V.H., Al-Mutairi, D.A., Liu, Y., Loges, N.T., Pathak, N., Austin-Tse, C., Sheridan, E., Schmidts, M., Olbrich, H., Werner, C., Haffner, K., Hellman, N., Chodhari, R., Gupta, A., Kramer-Zucker, A., Olale, F., Burdine, R.D., Schier, A.F., O'Callaghan, C., Chung, E.M., Reinhardt, R., Mitchison, H.M., King, S.M., Omran, H., Drummond, I.A., 2012. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nature Genetics 44: 714-719. PMC3371652

Kao RM, Vasilyev A, Miyawaki A, Drummond IA, McMahon AP. 2012. Invasion of distal nephron precursors associates with tubular interconnection during nephrogenesis. J Am Soc Nephrol. 23:1682-90. PMC3458467


Contact Us

Iain Drummond, PhD

149 13th Street Charlestown, MA 02129
  • Phone: 617-726-5647
  • Fax: 617-726-5669
  • Email Us

Associate Professor of Medicine

Back to Top