Direct-to-Consumer and Consumer-Initiated Genetic Testing: What Can I Learn from a DNA Test?

Direct-to-consumer (DTC) and consumer-initiated genetic tests are tests that can provide you with the opportunity to learn more about your genetic ancestry and connect with relatives, to explore your physical traits and preferences, and even to better understand your inherited risk to develop diseases. These DNA tests can be bought online or in stores. They may or may not require the involvement of your doctor or health insurance company.

Join genetic counselors, Renée Pelletier and Deanna Brockman, to learn about the advantages and limitations of DTC and consumer-initiated genetic tests. They will also review the general history and current state of DTC and consumer-initiated genetic tests, explore resources for additional information and professional support, and discuss the MGH Preventive Genomics Clinic—a new clinic which aims to empower patients to better understand, predict, and prevent disease using genetic information.

This online program is free and open to MGH staff, patients, and the general public.

To attend this program, click on this link: https://partners.zoom.us/j/81296743061

Featured Speaker: Renée Pelletier, MS, CGC
Renée Pelletier (she/her) is a genetic counselor at MGH and an affiliate researcher at the Broad Institute. Renée’s work focuses on clinical and research initiatives related to genomic medicine and policy, including leading the clinical counseling program in the MGH Preventive Genomics Clinic. In addition to her efforts at MGH and the Broad Institute, she serves on the Public Policy Committee for the National Society of Genetic Counselors.

Featured Speaker: Deanna Brockman, MS, CGC
Deanna Brockman (she/her) is a genetic counselor, leading research and outreach efforts that span the MGH Center for Genomic Medicine and the Broad Institute’s Cardiovascular Disease Initiative. Deanna’s work focuses on building an evidence base for understandable and impactful disclosure of genetic risk information, including through polygenic scores.