Cutaneous Biology Research Center
Zheng Laboratory: Bin Zheng, PhD
Contact Information
Cutaneous Biology Research Center
Charlestown Navy Yard Building 149
149 13th Street
Charlestown,
MA
02129
Phone: 617-724-9958
Fax: 617-726-4453
Associate Investigator, Massachusetts General Hospital
Associate Professor of Dermatology, Harvard Medical School
Education
Ph.D. Molecular Pathology, University of California, San Diego 2002
Postdoctoral Training
Beth Israel Deaconess Medical Center, Harvard Medical School. Signal Transduction / Cancer Biology. 2008
University of California, San Diego. Cell Biology. 2003
Honors
2019 Melanoma Research Alliance Established Investigator Award
2018 Sun Pharma/Society of Investigative Dermatology Mid-Career Award
2014 Harry J. Lloyd Charitable Trust Career Development Award
2013 Irma T. Hirschl Trust Career Scientist Award
2011-2014 Elizabeth and Oliver Stanton - MRA (Melanoma Research Alliance) Young Investigator Award
2011 Alexander and Margaret Stewart Trust Pilot Project Award
2011 V Scholar, The V Foundation for Cancer Research
2010 Keystone Symposia Scholarship
2008-2013 The Pathway to Independence Award (K99/R00), NIH/NCI
2008 AACR Scholar-in-training Award
2005-2007 Charles King Trust Postdoctoral Fellowship
2002-2003 Postdoctoral Fellowship, American Heart Association
1997-2000 Huang Memorial Scholarship, University of California San Diego
Explore This Lab
Overview
Our laboratory is working to decipher the molecular alterations in metabolic regulation and signal transduction that drives cancer, with a focus on melanoma. Our goal is to translate these findings into personalized targeted and immunotherapies, contributing to finding cures for melanoma.
Approximately half of all cutaneous melanomas harbor a mutation in BRAF (BRAF V600E) that drives cancer growth by constitutively activating downstream MEK/ERK signaling. The “addiction” of melanomas harboring this mutation has stimulated the development of BRAF inhibitors (BRAFi), including Vemurafenib and Dabrafenib. These BRAFi show great clinical benefit in malignant melanoma with BRAF V600E mutations in the initial phase of treatment. However, the vast majority of the responsive patients treated with these inhibitors develop resistance and relapse during the course of treatment. In addition to BRAF-targeted therapy, another recent groundbreaking approach in melanoma treatment involves targeting the immune checkpoints that counter melanoma’s intrinsically high immunogenicity. Biological drugs that target PD-1 or PD-L1 have shown significant clinical benefit in melanoma patients and have produced a high degree of durable responses, However, these outcomes are only achieved in a subset of patients. Therefore, overcoming BRAFi resistance and improving the response rates of immune checkpoint blockade therapies and represent two of the greatest challenges facing this field. The central goal of our research is to address these outstanding problems by gaining a better understanding of metabolic programming and signal transduction in melanoma and translate these basic research findings into better strategies for melanoma prevention, diagnosis and treatment. Preclinical work from our laboratory on a central metabolic regulator, AMP activated protein kinase (AMPK) and repurposing of phenformin, a previously approved diabetes drug, provided the basis for a Phase I clinical trial evaluating phenformin with the dabrafenib BRAF inhibitor and trametinib MEK inhibitor combination in patients with BRAF mutant melanoma (clinicaltrials.gov. NCT03026517).
We have been working on the following specific projects:
- Metabolic regulation of tumor immunity. We are pursuing the characterization of the metabolic vulnerabilities of myeloid-derived suppressor cells (MDSCs). MDSC is a major immune cell type that contributes to tumor-induced immune suppression and evasion of immune elimination. Importantly, MDSCs have been suggested to contribute to resistance to various cancer therapies in melanoma, including to anti-CTLA-4 and anti-PD-1 blockade. Hence, targeting MDSCs presents an attractive approach to modulate tumor immunity to improve current cancer immunotherapies.
- Roles of AMPK at the interface of metabolism and cancer. We have an interest in understanding the role of AMPK in melanoma tumor development and progression. We are investigating downstream metabolic targets of AMPK in melanoma cells. In addition, we are characterizing the role of AMPK in modulating the function of MDSCs in the tumor microenvironment.
- Repurposing phenformin for cancer therapy. We continue to elucidate the mechanism of action for the anti-tumor activities of phenformin, and to facilitate the translational studies on repurposing phenformin for cancer prevention and treatment.
- Metabolic rewiring and BRAFi resistance. We are exploring metabolic changes that occur during the development of BRAFi resistance in melanoma and characterizing metabolic vulnerabilities that can be targeted to overcome BRAFi resistance in melanoma. These efforts may lead to better combinatory therapeutic strategies in melanoma.
- Metabolic heterogeneity in melanoma. Intratumor phenotypic heterogeneity has been shown to influence drug resistance and metastasis. In melanoma, a slow-cycling subpopulation of cells that is marked by expression of the H3K4 histone lysine demethylase KDM5B has previously been identified. We are therefore characterizing KDM5B-dependent metabolic heterogeneity in melanoma and explore its therapeutic implications.
- Alterations of 3D genome organization in melanoma. Mammalian genomes are folded in a highly organized fashion within the nucleus. The cohesin complex participates in the required 3D organization that regulates gene expression through generating and maintaining DNA loops. We recently discovered that loss of the tumor suppressor STAG2, which encodes a core subunit of the cohesin complex, as a novel mechanism of resistance to BRAF pathway inhibition in melanoma. We are currently characterizing direct targets of STAG2 in melanoma through various cutting edge epigenomic approaches, which will provide insights into how STAG2 contributes to malignant phenotypes in cancer.
Publications
Selected Publications
Zhao H, Teng D, Yang L, Xu X, Chen J, Jiang T, Feng AY, Zhang Y, Frederick DT, Gu L, Cai L, Asara JM, Pasca di Magliano M, Boland GM, Flaherty KT, Swanson KD, Liu D, Rabinowitz JD, Zheng B. Myeloid-derived itaconate suppresses cytotoxic CD8+ T cells and promotes tumour growth. Nat Metab. 2022 Nov 14. doi: 10.1038/s42255-022-00676-9.
- Accompanying Research Briefing: Suppression of CD8+ T cells by the metabolite itaconate. doi: 10.1038/s42255-022-00694-7.
Chu Z, Gu L, Hu Y, Zhang X, Li M, Chen J, Teng D, Huang M, Shen CH, Cai L, Yoshida T, Qi Y, Niu Z, Feng A, Geng S, Frederick DT, Specht E, Piris A, Sullivan RJ, Flaherty KT, Boland GM, Georgopoulos K, Liu D, Shi Y, Zheng B. STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming. Nat Commun. 2022 Apr 6;13(1):1859.
Zhao H, Swanson KD, Zheng B. Therapeutic Repurposing of Biguanides in Cancer. Trends Cancer. 2021 Aug;7(8):714-730.
Zhou, Q., Kim, S. H., Pérez-Lorenzo, R., Liu, C., Huang, M., Dotto, G. P., Zheng, B*., & Wu, X*. 2020. Phenformin Promotes Keratinocyte Differentiation via the Calcineurin/NFAT Pathway. J Invest Dermatol. 2021 Jan;141(1):152-163. (* equal contributions).
Zhao H, Zheng B. Dual Targeting of Autophagy and MEK in KRAS Mutant Cancer. Trends Cancer. 2019 Jun;5(6):327-329.
Strub T, Ghiraldini FG, Carcamo S, Li M, Wroblewska A, Singh R, Goldberg MS, Hasson D, Wang Z, Gallagher SJ, Hersey P, Ma'ayan A, Long GV, Scolyer RA, Brown B, Zheng B, Bernstein E. 2018. SIRT6 haploinsufficiency induces BRAF melanoma cell resistance to MAPK inhibitors via IGF signaling. Nat Commun. 2018; 9:3440.
Swanson KD, Zheng B. Supplementing Cancer? Mol Cell. 2018 Mar 15;69(6):917-918.
Kim SH, Li M, Trousil S, Zhang Y, Pasca di Magliano M, Swanson KD, Zheng B. Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances the Anti-Tumor Activity of PD-1 Blockade in Melanoma. J Invest Dermatol. 2017 Aug;137(8):1740-1748.
Trousil S, Chen S, Mu C, Shaw FM, Yao Z, Ran Y, Shakuntala T, Merghoub T,Manstein D, Rosen N, Cantley LC, Zippin JH, Zheng B. Phenformin Enhances the Efficacy of ERK Inhibition in NF1-Mutant Melanoma. J Invest Dermatol. 2017 May;137(5):1135-1143.
Wu L, Zhou B, Oshiro-Rapley N, Li M, Paulo JA, Webster CM, Mou F, Kacergis MC, Talkowski ME, Carr CE, Gygi SP, Zheng B, Soukas AA. An Ancient, Unified Mechanism for Metformin Growth Inhibition in C. elegans and Cancer. Cell. 2016 Dec 15;167(7):1705-1718.e13.
Shen CH, Kim SH, Trousil S, Frederick DT, Piris A, Yuan P, Cai L, Gu L, Li M, Lee JH, Mitra D, Fisher DE, Sullivan RJ, Flaherty KT, Zheng B. Loss of cohesion complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. Nat Med. 2016 Sep;22(9):1056-61.
Trousil S, Zheng B. Addicted to AA (Acetoacetate): A Point of Convergence between Metabolism and BRAF Signaling. Mol Cell. 2015 Aug 6;59(3):333-4.
DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P, Hsieh M, Zhu S, Asara JM, Zheng B, Bardeesy N, Liu J, Wu X. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep. 2014 Oct 23;9(2):495-503.
Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen CH, Bosenberg MW, McMahon M, Cantley LC, Zheng B. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18226-31.
Shen CH, Yuan P, Perez-Lorenzo R, Zhang Y, Lee SX, Ou Y, Asara JM, Cantley LC, Zheng B. Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Mol Cell. 2013 Oct 24;52(2):161-72.