Impact of Mentoring on Academic Career Success for Women in Medicine: A Systematic Review

Mary R. Shen, MD, MS, Emma Tzioumis, PhD, MPH, Elizabeth Andersen, PhD, Kathryn Wouk, PhD, MS, IBCLC, Rebecca McCall, MLS, Winston Li, MD, Susan Girdler, PhD, and Erin Malloy, MD

Abstract

Purpose

Research has shown that barriers to career success in academic medicine disproportionately affect women. These barriers include inadequate mentoring, which may perpetuate the underrepresentation of women in senior leadership positions. The purpose of this review was to summarize the qualitative and quantitative evidence of the impact of mentoring on women's career outcomes and to inform future interventions to support the promotion and retention of women in academic medicine.

Method

The authors conducted a systematic review of original research published in English-language, peer-reviewed journals through March 20, 2020. Search terms related to mentorship, women, and academic medicine. The
authors searched MEDLINE, Embase, Scopus, Current Contents Connect via Web of Science, Cochrane Library, and PsycINFO. They excluded studies not specifically addressing women and those without gender-stratified outcomes. They extracted and analyzed the following data: study design, population, sample size, response rate, participant age, percentage of women, mentoring prevalence, and outcomes.

Results

Of 2,439 citations identified, 91 studies met the inclusion criteria, including 65 quantitative and 26 qualitative studies. Mentoring was associated with objective and subjective measures of career success. Women perceived mentorship to be more valuable to their career development yet were more likely to report having no mentor. Additionally,
women were more likely to report lower levels of research productivity, less career satisfaction, and greater barriers to promotion. Qualitative results indicated that women had less access to informal mentoring and family responsibilities had a greater effect on their career outcomes. Professional networking, female mentors, and relational aspects of mentoring were common themes.

Conclusions

This review examined gender disparities in mentoring and the impact on research productivity, promotion success, and career satisfaction for women in academic medicine. Institution-supported mentoring programs are needed to facilitate identification of appropriate mentors and promotion of a more equitable academic career environment for women.

In the United States, individuals identifying as women (subsequently referred to as women) comprise over half of medical school graduates but represent only 21% of full professors and 15% of department chairs. ${ }^{1}$ Potential contributions to this "leaky pipeline" include pay inequity, caregiving responsibilities, discrimination, and inadequate mentoring. ${ }^{2-4}$ Increasing access to effective mentoring is an actionable strategy for institutions to improve the retention and promotion of women in academic medicine.

[^0]
Acad Med. 2022;97:444-458.

First published online December 14, 2021
doi: 10.1097/ACM. 0000000000004563
Copyright © 2021 by the Association of American Medical Colleges
Supplemental digital content for this article is available at http://links.Iww.com/ACADMED/B217.

In 2006, a systematic review examined the prevalence of mentorship and its association with career choice, career progression, and scholarly productivity in academic medicine. ${ }^{3}$ However, only 6 included studies (14\%) explored gender differences in mentoring. One study found that women reported a lower prevalence of mentorship, suggesting that insufficient mentorship has a greater negative impact on women's career experiences compared with men's experiences. ${ }^{3}$

Since then, barriers to career advancement and retention specific to women in academic medicine have gained attention, but women still face significant obstacles. Few institutions have gender-specific mentoring programs. For example, a systematic review of the literature on mentoring programs for academic physicians showed that only 22% of existing programs were aimed toward women. ${ }^{5}$ Establishing a baseline of knowledge
regarding the efficacy of mentoring women in academic medicine is necessary to direct future interventions.

We conducted a systematic review of the literature examining the association between all types of mentoring and career development outcomes in academic medicine. We defined mentoring as a "dynamic, reciprocal relationship in a work environment between an advanced career incumbent (mentor) and a beginner (protégé)" 6 that promotes the development of both. We considered a range of modalities including dyad, peer, facilitated peer, speed, functional, group, and distance.

Our work advances the literature in 2 important directions. First, we specifically examined gender disparities in mentoring and role modeling and the impact on professional success for women in academic medicine. Second, whereas previous reviews have focused on quantitative studies, we included both
quantitative and qualitative studies to provide a comprehensive interpretation of the literature.

Method

Search strategy

A medical librarian (R.M.) developed algorithms to search MEDLINE (PubMed), Embase and Scopus (Elsevier), Current Contents Connect via Web of Science, the Cochrane Library, and PsycINFO (EBSCO) from database inception through November 30, 2017, according to the Preferred Reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) guidelines. The search was repeated on March 20, 2020. Search terms included the concepts of mentoring, women, and academic medicine and used a combination of subject headings and keywords (see Supplemental Digital Appendix 1, at http://links.lww.com/ACADMED/B217, for the search strategy). References were extracted and imported into EndNote (Clarivate, Philadelphia, Pennsylvania), and duplicates were removed. All studies were assigned a unique identification number.

Inclusion and exclusion criteria

We included original research published in English-language, peer-reviewed journals reporting on mentoring women in academic medicine. Study populations included academic female physicians in all specialties (practicing and nonpracticing), residents, and medical students. Forms of mentoring included formal and informal, dyad, group mentoring, comprehensive programs with a mentoring component, and role modeling. Studies reporting prevalence of mentoring or outcomes or self-evaluation in areas such as research productivity (publications, grant funding, authorship), career success (promotions, awards, retention, salary equity), work-life balance (marriage/partner, children), well-being (depression, stress levels, anxiety, burnout), and confidence were included. Studies not specifically addressing women and studies without gender-stratified outcomes were excluded.

Study selection

We worked in pairs (M.R.S., E.A., W.L.) to independently screen the titles and abstracts of the identified studies, then we (M.R.S., E.T., E.A., K.W.) independently
reviewed the full-text quantitative studies for inclusion. Two authors (E.T. and K.W.) independently reviewed the fulltext qualitative studies. Discrepancies were resolved by the senior author (E.M.).

Data extraction

Four authors (M.R.S., E.T., E.A., and K.W.) extracted data from the included quantitative studies. Two authors (E.T. and K.W.) extracted data from the included qualitative studies. The following data were extracted and recorded using a standardized electronic form: study design, population/setting, sample size, response rate, participant age, percentage of women in the sample, prevalence of mentoring, and mentoringrelated outcomes.

Data analysis

The included quantitative studies were heterogeneous with respect to study design, population, and reported outcomes and therefore were not amenable to meta-analysis. We synthesized the qualitative studies using qualitative meta-summary, ${ }^{7}$ which is a quantitative aggregation of qualitative research results. We grouped the study findings into themes, then organized the findings according to the levels of the socioecological model (individual, interpersonal, institutional). ${ }^{8,9}$ We further refined the findings within each level into subthemes.

Risk of bias assessment

Randomized controlled trials, observational studies, and qualitative studies were evaluated using the Cochrane Collaboration's tool for assessing risk of bias, ${ }^{10}$ the Agency for Healthcare Research and Quality standards, ${ }^{11}$ and the Critical Appraisal Skills Programme qualitative checklist, ${ }^{12}$ respectively.

Results

The database searches yielded 2,439 citations. Results were exported to EndNote and 936 duplicates were removed, yielding 1,503 unique citations that were manually screened for relevance (see Figure 1). Sixty-five quantitative studies ${ }^{13-77}$ and 26 qualitative studies ${ }^{78-103}$ met inclusion criteria, for a total of 91 studies included in our review. Appendix 1 summarizes the characteristics of the included studies and their respective quality assessments.

Quantitative results

Thirty-five studies examined the impact of mentoring on indicators of academic success, including research productivity, career success, and career satisfaction (see Supplemental Digital Appendix 2 at http://links.lww.com/ ACADMED/B217). ${ }^{13,15,17,19-22,25,29,32,34-37,39,45-}$ 47,51,52,56,59,60,62,63,66,69-76,100

The impact of mentoring on research productivity was reported in 11 studies. ${ }^{13,15,20,29,37,51,52,5,66,62,69,73}$ Women were less likely to report having a research mentor and reported fewer peer-reviewed publications than men. ${ }^{15,29,51}$ A strong mentoring relationship was associated with more publications ${ }^{52}$ and achieving professional goals. ${ }^{37}$ For early-career faculty, mentoring programs were associated with improved research skills, research productivity, ${ }^{56,73}$ and satisfaction with academic achievement. ${ }^{73}$

Nineteen studies examined mentoring and career success. ${ }^{17,21,22,25,34-36,39,45-}$ 47,59,60,66,70-72,74,76 Women were more likely than men to report mentorship as important to their career development, ${ }^{34,47,66}$ yet they reported less mentoring, ${ }^{22,35,72}$ career training, ${ }^{47}$ career success, ${ }^{21,22,45}$ and satisfaction with their mentoring experience ${ }^{21,39,71}$ compared with men. In a study of psychiatry chief residents, having a defined mentor was associated with preparedness for independent practice (odds ratio, 1.99; 95% confidence interval, $1.18-3.36$). ${ }^{104}$ Mentoring was also associated with objective measures of career success, ${ }^{70}$ including promotion. ${ }^{36,76}$

Similarly, despite regarding mentorship networks as more valuable, women were less likely to report effective mentoring in critical areas required for promotion, including clinical knowledge and technical skills. ${ }^{71}$ Female physicians with male mentors of high academic rank reported more effective career sponsorship but were less likely to receive personal advice than female physicians with female mentors. ${ }^{60}$ One study demonstrated that direct mentorship around leadership skills, as well as the presence of a female program director, was significantly associated with more interest in women in pursuing leadership roles. ${ }^{17}$ In another study, the percentage of women among principal investigators increased from 10% to $55 \%(P=.02)$ after the implementation

Records identified through database searches
$(\mathrm{n}=2,439)$

Additional records identified through other sources
($\mathrm{n}=0$)

Records after duplicates removed
($\mathrm{n}=1,503$)

Studies included in article
synthesis
($\mathrm{n}=91$)

Full-text articles excluded

$$
(\mathrm{n}=180)
$$

- Wrong study design/ publication type $(\mathrm{n}=55)$
- Wrong outcomes ($\mathrm{n}=34$)
- Wrong intervention ($\mathrm{n}=29$)
- Gender not discussed/ analyzed ($\mathrm{n}=25$)
- Mentoring not discussed/ measured $(\mathrm{n}=21)$
- Wrong population ($\mathrm{n}=13$)
- Full text/complete data unavailable $(\mathrm{n}=2)$
- Not in English ($\mathrm{n}=1$)

Figure 1 Study review and selection process for a systematic review of the literature on the impact of mentoring on women in academic medicine. The initial search was conducted on November 30, 2017, then repeated on March 20, 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. ${ }^{136}$
of a mentorship program. ${ }^{25}$ However, women were more likely to report barriers to promotion, including little to no mentorship and limited time due to family responsibilities. ${ }^{76}$

Four studies examined mentorship and career satisfaction. ${ }^{19,32,63,75}$ Retention and career satisfaction were lower for women than men. In one study, fewer female than male faculty members (56% vs 70%) reported an intention to remain in academic medicine for 10 years. ${ }^{32}$ Additionally, female researchers reported receiving less support and finding less career satisfaction than male
researchers. ${ }^{19}$ Mentoring also predicted greater career satisfaction. ${ }^{63,75}$

Qualitative results

Descriptive characteristics of the included qualitative studies, most of which were high quality, are presented in Appendix 1. We identified 4 themes:
(1) qualities of a desired mentor,
(2) actions of a desired mentor, (3) barriers to successful mentoring, and (4) strategies for successful mentoring. Within each theme, we categorized the study findings according to the levels of the socioecological model: individual, interpersonal, and institutional. Within
each level, we further categorized the findings into subthemes.

Qualities of a desired mentor. Sixteen studies reported findings on the qualities of a desired mentor (see Supplemental Digital Appendix 3 at http://links.lww. com/ACADMED/B217), ${ }^{33,82,84,86,88-92,94-}$ ${ }^{96,98-101}$ highlighting the importance of individual-level qualities in mentors. Gender match was desired by female mentees, as were role models for balancing family and career. ${ }^{33,86,89-92,94,96,98-100}$ Female mentors notably provided advice regarding personal issues and work-life balance ${ }^{86,89,90,92,98,100}$ and were especially
helpful for women in traditionally maledominated fields. ${ }^{91,96}$ Specific professional and personal attributes of desired mentors were also described, ${ }^{84,86,88,89,91,95,100}$ as was the importance of a mentor's ability to create a personal connection and support a mentee. ${ }^{88,91,95}$

Actions of a desired mentor. Seventeen studies reported findings on the actions of a desired mentor (see Supplemental Digital Appendix 3 at http://links.lww.com/ ACADMED/B217). ${ }^{79,82,84,86-88,91-95,97,99-103}$ On the interpersonal level, ideal mentors helped mentees develop necessary skills for an academic career ${ }^{86,87,99}$ by providing feedback, ${ }^{95,100}$ promoting mentees, ${ }^{94,95}$ and providing networking opportunities. ${ }^{86,101}$ Mentors played an instrumental role in developing mentees' careers by advising and supporting concrete career steps, ${ }^{82,84,86,99,100}$ helping mentees market their abilities, ${ }^{95}$ and building their character. ${ }^{82,8,8,87,92,95,97}$ On the institutional level, strong mentors promoted and sponsored their mentees in the department and in academic circles. ${ }^{92,101,102}$

Barriers to successful mentoring.

Twenty-one studies reported findings on the barriers to successful mentoring (see Supplemental Digital Appendix 4 at http://links.lww.com/ACADMED/ B217). ${ }^{79-81,83,85,86,88-91,93-103}$ On the individual level, female mentees reported lacking time to find a mentor and maintain a mentoring relationship ${ }^{80,93,99,101}$ and saw potential mentors as being overextended. ${ }^{86,91,93}$

On the interpersonal level, mentees reported a lack of appropriate mentors, based on gender, ${ }^{80,81,85,96-98,100,102}$ underrepresented status, ${ }^{94,101}$ and/ or career stage. ${ }^{98,100}$ Poor position or personality matches ${ }^{79,90,95,99,102}$ and dissimilar values ${ }^{89,90}$ were frequently reported as barriers. Three studies highlighted a perceived gender disadvantage. Women described limited strategies for finding a mentor ${ }^{93}$ and less exposure to informal mentoring. ${ }^{90,91}$ Female mentors were perceived to have limited influence to provide sponsorship and networking opportunities, ${ }^{91}$
while male mentors were seen as less comfortable with discussions about work-life balance. ${ }^{89}$ Instances of mentors' inappropriate behavior also were reported as barriers. ${ }^{79,88}$

Three studies reported female mentees' own insecurities as barriers, including
their reluctance to initiate contact or share career decisions with mentors with influence over their career path. ${ }^{91,93,101}$

On the institutional level, barriers to successful mentoring included little incentive for faculty to provide mentorship, ${ }^{83}$ policies that did not prioritize mentoring for female faculty, ${ }^{83}$ and lack of structured mentoring programs. ${ }^{80,101}$ Institutional culture was cited in 4 studies as another barrier. ${ }^{80,93,94,101}$

Strategies for successful mentoring.

Nineteen studies suggested strategies for successful mentoring (see Supplemental Digital Appendix 4 at http://links.lww. com/ACADMED/B217). ${ }^{81-84,86,88-97,99-102}$ On the individual level, mentees reported a desire for assistance in identifying potential mentors ${ }^{93}$ and for senior professionals to take more initiative in forming mentoring relationships. ${ }^{101}$

On the interpersonal level, establishing a network of multiple mentors was repeatedly suggested as an approach to meet mentoring needs. ${ }^{81,84,86,89,99,100,102}$ Mentees emphasized access to a variety of mentors, within and outside their department, ${ }^{84}$ sharing key demographic characteristics and experiences. ${ }^{88,94,97,100,101}$ One study suggested that relational mentoring was more important than gender concordance. ${ }^{91}$ In developing mentoring networks, including an influential champion within the organization was recommended. ${ }^{92,95}$

On the institutional level, institutional commitment was seen as a prerequisite for successful mentoring, with mentoring being formally recognized as part of the organization's corporate strategy. ${ }^{82}$ Recognizing individuals' mentoring contributions was also advised. ${ }^{82,100}$ Formal mentoring programs were suggested to reinforce the importance of mentoring, ${ }^{94,100,101}$ as was leveraging existing resources to create new mentoring programs. ${ }^{86}$ Also discussed were institutional policies promoting mentoring and the creation of a diverse academic faculty to retain women and underrepresented individuals in academia so they may mentor others. ${ }^{90,94}$

Discussion

Ours is the first review to establish a baseline of knowledge regarding the efficacy of all forms of mentorship for female physicians, residents, and medical
students and to include both quantitative and qualitative studies. Including both types of studies enabled us to provide a more comprehensive summary of the factors that influence the effectiveness of mentoring. The purpose of our review was to gather evidence of the impact of mentoring on women's career outcomes, as well as to enable institutions to instill evidence-based policies to promote the retention of women in academic medicine. We identified 91 studies that related to this topic. Our results add to the findings of previous systematic reviews ${ }^{3-5,105}$ describing mentoring programs for women in academic medicine in that we explored both informal and formal mentoring and the effects of these programs on women's professional success and personal satisfaction.

We found several associations between mentoring and indicators of academic success, with important differences for women compared with men. Specifically, we identified consistent relationships between mentoring and research productivity, promotion, barriers to career advancement, career satisfaction, and network building.

Research productivity is integral to a successful career in academia. Yet, women are less likely to have research training and have lower publication rates than men, and men tend to have significantly more research scholarships, grants, and awards than women. ${ }^{15,29}$ In our review, 7 studies reported that, regardless of gender, a strong mentoring relationship was associated with increased research productivity, based on both subjective reports of achieving professional goals and skills and objective measures such as research publications. ${ }^{15,20,37,52,56,73,104}$ Mentoring could therefore be one strategy to offset gender disparities in research productivity. ${ }^{106-108}$ Studies have proposed that lower research productivity for women may be due to different priorities (e.g., time spent on direct patient care, service, prioritizing teaching over research), time limitations given family obligations, lack of sponsorship, and lack of mentoring. ${ }^{109-111}$ The recent impact of the COVID-19 pandemic on research productivity for women underscores this suggestion. A recent report described decreases in the number of manuscript submissions, first authorship, last authorship, and corresponding
authorship for women during the COVID-19 pandemic. ${ }^{112}$

Academic rank also plays an important role in research productivity for women. Studies show that women who achieve senior positions have comparable research productivity to their male counterparts. ${ }^{52,110,113-116} \mathrm{~A}$ study by Kramer and colleagues showed that, even when women are publishing, they are underrepresented in terms of last authorship and have less access to key authorship positions, which could be rectified by adequate mentoring during manuscript creation. ${ }^{111}$

Levine and colleagues examined multiple reasons for women's early-career departure from academic medicine, detailing poor research mentorship as a contributing factor. ${ }^{90}$ Another study suggested that early-career development and mentorship of female faculty could reduce productivity disparities. ${ }^{109}$ Yet, few studies have looked at early-career research interventions and their effect on productivity. One such study examining a peer mentoring pilot program found an increase in the number of published papers, promotion in academic rank, and skills acquisition among female participants. ${ }^{36}$

The exact causes of gender disparities in research productivity are unclear and are likely multifactorial. Comparing research productivity among women with primary caregiving responsibilities and those without would be revealing. Future studies with larger sample sizes should examine the impact of mentoring interventions on improving research productivity and skills for women early in their career.

In the studies included in our review, women tended to report less career training and lower satisfaction with mentoring than men. ${ }^{39,51}$ A crosssectional study conducted by Levinson and colleagues found that mentorship positively correlated with time in research and numbers of publications. ${ }^{52}$ While many of the aforementioned factors (e.g., time limitations) are difficult to address, organizing mentoring for women by facilitating mentor matches, providing mentor training, creating mentor networks, and supporting peer mentoring may provide tangible solutions to improving women's career satisfaction.

Women are underrepresented in higher ranking positions in academia due to persistent inequities that inhibit their advancement. ${ }^{117}$ Female faculty are less likely to be full professors compared with male faculty, despite similar professional roles and achievements. ${ }^{117}$ Furthermore, a survey of academic surgery faculty by Colletti and colleagues found that men were more likely than women to report intent to continue in their academic surgery careers. ${ }^{32}$ In this context, we examined the relationship between mentoring and career development. Interestingly, quantitative studies reported that women were more likely than men to value mentoring as an important part of their career development, yet women reported a lower prevalence of mentoring. ${ }^{21,48}$ In addition, in these studies, women reported relatively less career advancement and less satisfaction with their mentoring experience compared with their male colleagues. ${ }^{21,39,48}$ Quantitative data also revealed that mentoring positively affected academic promotion and retention for junior faculty, ${ }^{57}$ suggesting that institutions should invest more in formalized mentoring programs to help women connect with effective mentors.

Career satisfaction is another important facet of retaining women in academia. In a study of faculty with children at 24 randomly selected medical schools in the United States, women had less institutional support and lower career satisfaction than men. ${ }^{63}$ In addition, female physicians have reported genderbased and sexual harassment as well as lower salaries and increased personal/ family obligations, which also detract from their career satisfaction. Higher rates of divorce and suicide completion in female physicians have been reported as well. ${ }^{118-120}$ However, several studies demonstrated that the presence of a mentor and/or role model was associated with increased career satisfaction. ${ }^{19,32,63,75}$ Increasing access to mentoring and support in the form of sharing strategies to cope or navigate gender-specific stressors may improve well-being, career satisfaction, and retention for women in academic medicine.

Next, barriers to promotion must be considered. Wise and colleagues found that female obstetrics and gynecology faculty in Canada were more likely to report barriers to promotion compared
with male faculty. ${ }^{76}$ Similarly, Buckley and colleagues found women were more likely to report that promotion and tenure criteria had not been reviewed with them and that they had received less career development guidance. ${ }^{121}$ In a qualitative study examining barriers to career advancement in women, Carr and colleagues found that gender discrimination, lack of mentoring, limited time for professional work, and the perception that the hierarchal structure in academia works against women all contributed to promotion barriers. ${ }^{83}$ Interestingly, one study demonstrated that having a mentor doubled the likelihood of gaining promotion. ${ }^{122}$ Further research addressing these barriers to promotion is paramount. Such studies should examine the impact of subsidized childcare and/or on-site childcare on women's rate of promotion. ${ }^{123}$

Our findings suggest that creating professional mentoring relationships and support networks may benefit women in academic medicine, specifically given the importance of mentors serving as advocates for female mentees. ${ }^{79,84,94,95,103}$ Work by Wasserstein and colleagues suggests that building mentoring networks, including with peer mentors, may particularly benefit women by addressing disparities in career training and increasing overall career satisfaction. ${ }^{75}$ Despite the importance of male mentors as sponsors, ${ }^{60}$ another study found that female mentors are critical for providing personal advice and role modeling. ${ }^{59}$

The qualitative studies included in our review highlighted relationship building ${ }^{88,91,93,95}$ as important to mentoring women, consistent with previous work. For example, women reported less exposure to informal mentoring and more difficulty finding mentors compared with men. ${ }^{90,91}$ A study of 2 focus groups divided by gender conducted by McNamara and colleagues found that men had more strategies for finding mentors (e.g., identifying mentors through research, similar interests, friendship, networking), while women used more passive approaches, ${ }^{93}$ possibly contributing to the lower prevalence of mentoring for women. The qualitative studies also emphasized that expanding access to mentoring networks across departments would benefit mentees professionally and personally. ${ }^{86,89,100}$

The included qualitative studies also pointed to factors that may contribute to more positive career outcomes and minimize barriers for women. Female mentors and mentors as role models emerged as important factors for women learning how to balance an academic career and family, as male mentors were perceived to be less comfortable discussing work-life balance. At the institutional level, these studies supported the funding, creation, and monitoring of formal mentoring programs, incentives for mentoring, and the inclusion of mentoring in institutional strategic planning. ${ }^{83}$

Limitations

We acknowledge several limitations in this review. As with prior reviews on mentoring women in academic medicine, ${ }^{2}$ our search yielded mostly cross-sectional studies, small sample sizes, and low/missing response rates. In almost all studies comparing genders, women were only included in small numbers and were underrepresented relative to men. Despite these limitations and the potential for type II error, significant and consistent gender differences emerged in the quantitative data we reviewed. These studies suggested that women were disadvantaged in receiving mentoring and in the outcomes of research productivity, career success, and career satisfaction.

The quantitative studies with higher numbers of participants were primarily cross-sectional in nature. The controlled study of mentoring is challenging. How might one control for personality/ interpersonal characteristics that could vary among mentors and mentees? How might one measure those potentially subjective characteristics that may contribute to effective mentoring? In addition, providing mentoring to one subset and withholding it from another is difficult to control and ethically worrisome, rendering the randomized controlled trial approach potentially illsuited for studying the effects of such a socially complex issue. Not only is there variability in "dosages" of mentoring interactions, in terms of different amounts or depths of mentoring received, but there are also multiple mediating, moderating, and environmental complexities and conflicting goals of stakeholders, making an experimental design challenging. Finally, we recognize
the limitations of comparing women and men and hope that future research can incorporate those who identify as nonbinary or third gender.

Future work

There has been increased support on a national level for studying the components of mentoring that contribute to academic success, including the Science of Mentoring, Networking, and Navigating Career Transition Points U01 Awards Program from the National Research Mentoring Network. ${ }^{124}$ In addition, the National Science Foundation's ADVANCE grant program was founded to promote career development for women in science, technology, engineering, and medicine. ${ }^{125}$ The ADVANCE program aims to enhance women's careers and eliminate gender inequities via mentoring models ${ }^{125}$ as well as provide evidence for the benefits of faculty mentoring, as female assistant professors with a mentor had a higher probability of receiving grants than those without. ${ }^{126}$ The ADVANCE Strategies for Effecting Gender Equity and Institutional Change Toolkit offers evidence-based recommendations to address systemwide barriers in the context of bias against women in academia. ${ }^{127}$ Despite these resources, only a small number of academic institutions offer formal mentoring programs tailored for women. A recent systematic review identified 19 formal mentorship programs for women in academic medicine at the 190 identified medical institutions in the United States. ${ }^{105}$ Significant barriers to implementing mentoring programs for women are not surprising; they include cost, lack of support staff, and time. ${ }^{105}$

The reported differences in mentoring experiences between men and women are multifactorial and require further study. Traditional gender roles may influence how men and women seek and use mentorship, and it is possible that mentors prefer mentees who are similar to themselves. ${ }^{128}$ There also may be gender differences in the benefits mentees derive from various types of mentoring, ranging from the traditional dyad mentor-mentee relationship to peer and group mentoring. ${ }^{129}$

Future studies should explore the role of mentoring for women experiencing intersectional disadvantage, including social, economic, and political.

Research should aim to understand the experiences of women who face structural barriers to mentorship and advancement, such as those based on race, sexual identity/orientation, age, and disability. Given the recent finding that topic choice may lead African American/Black scientists to receive lower rates of National Institutes of Health awards compared with White scientists, ${ }^{130}$ future research should investigate the role of mentorship to improve diversity in academic medicine in the context of intersecting barriers to advancement. These issues call for broader research examining the impact on underrepresented faculty of mentoring strategies like creating an "intersectional research team," ${ }^{131,132}$ ensuring the inclusion of diverse study participants, ${ }^{133}$ and incorporating an intersectionality analysis as part of the study design. ${ }^{132,134}$

Overall, the impact of mentoring on women in academic medicine warrants not only continued study but also action. A proactive approach from mentors to create personal connections may be beneficial to female mentees, ${ }^{86,93}$ given reported barriers including time, limited strategies for identifying potential mentors, and a reluctance to initiate contact due to insecurities and traditional gender roles, ${ }^{93}$ as well as stereotype threat and impostor syndrome. Resources that enable the development and optimization of formal mentoring programs are particularly important because, according to the literature, women have less access to informal mentoring than men. ${ }^{38}$ It is also important to consider how women can effectively mentor other women. ${ }^{135}$ Expanding access to informal networks of peers and diverse mentors and building networking skills are key. Furthermore, support and recognition for mentoring and tracking both career outcomes and personal gains for women are recommended. By establishing a baseline of knowledge in this review, our hope was to provide a foundation for future implementation and dissemination science research to ultimately mobilize institutional change.

Conclusions

Our review strongly suggests that mentoring in academic medicine is associated with increased research productivity, promotion success, career satisfaction, and academic retention
for both women and men. Yet, women report less mentoring, less research productivity, greater barriers to promotion, and lower levels of career satisfaction than men. Mentoring that includes relationship building and access to female mentors and role models is needed to improve the retention of women in academic medicine. Institutional efforts promoting formal mentoring programs, access to informal mentoring, incentives for mentoring, and flexible work policies are critical to promote an equitable academic career environment for women.

Funding/Support: This research was supported by the National Science Foundation (NSF 1760187) and the National Institutes of Health (NIH T32HS000053). The NSF and NIH had no role in the collection, management, or interpretation of the data; preparation, review, or approval of the manuscript; nor the decision to submit the manuscript for publication.

Other disclosures: None reported.
Ethical approval: Reported as not applicable.
M.R. Shen is a resident, Department of Surgery, University of Michigan, Ann Arbor, Michigan; ORCID: https://orcid.org/0000-0002-8923-4174.
E. Tzioumis is assistant professor, Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
E. Andersen is assistant professor, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
K. Wouk is a postdoctoral research fellow, Carolina Global Breastfeeding Institute, and adjunct associate professor, Department of Maternal and Child Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
R. McCall is clinical librarian, Health Sciences Library, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
\mathbf{W}. Li is assistant professor, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
S. Girdler is professor, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
E. Malloy is professor, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

References

1 Lautenberger DM, Dandar VM, Raezer CL, Sloane RA. The State of Women in Academic Medicine: The Pipeline and Pathways to Leadership. Washington, DC: Association of American Medical Colleges; 2014.

2 Carr PL, Gunn CM, Kaplan SA, Raj A, Freund KM. Inadequate progress for women in academic medicine: Findings from the National Faculty Study. J Womens Health (Larchmt). 2015;24:190-199.

3 Sambunjak D, Straus SE, Marusić A. Mentoring in academic medicine: A systematic review. JAMA. 2006;296:1103-1115.
4 Sambunjak D, Straus SE, Marusic A. A systematic review of qualitative research on the meaning and characteristics of mentoring in academic medicine. J Gen Intern Med. 2010;25:72-78.
5 Kashiwagi DT, Varkey P, Cook DA. Mentoring programs for physicians in academic medicine: A systematic review. Acad Med. 2013;88:1029-1037.
6 Healy CC, Welchert AJ. Mentoring relations: A definition to advance research and practice. Educ Res. 1990;19:17-21.
7 Sandelowski M, Barroso J. Creating metasummaries of qualitative findings. Nurs Res. 2003;52:226-233.
8 Stokols D. Social ecology and behavioral medicine: Implications for training, practice, and policy. Behav Med. 2000;26:129-138.
9 McLeroy KR, Bibeau D, Steckler A, Glanz K. An ecological perspective on health promotion programs. Health Educ Q. 1988;15:351-377.
10 Higgins JPT, Altman DG, Sterne JAC, eds. Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Churchill R, Chandler J, Cumpston MS, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.2.0. Cochrane Collaboration; 2017.
11 Viswanathan M, Patnode CD, Berkman ND, et al. Recommendations for assessing the risk of bias in systematic reviews of health-care interventions. J Clin Epidemiol. 2018;97:26-34.
12 Critical Appraisal Skills Progamme. CASP Qualitative Checklist. https://casp-uk.b-cdn. net/wp-content/uploads/2018/03/CASP-Qualitative-Checklist-2018_fillable_form. pdf. Published 2018. Accessed November 22, 2021.

13 Amonoo HL, Barreto EA, Stern TA, Donelan K. Residents' experiences with mentorship in academic medicine. Acad Psychiatry. 2019;43:71-75.
14 Arlow FL, Raymond PL, Karlstadt RG, Croitoru R, Rybicki BA, Sastri SV. Gastroenterology training and career choices: A prospective longitudinal study of the impact of gender and of managed care. Am J Gastroenterol. 2002;97:459-469.
15 Athanasiou T, Patel V, Garas G, et al. Mentoring perception, scientific collaboration and research performance: Is there a 'gender gap' in academic medicine? An academic health science centre perspective. Postgrad Med J. 2016;92:581-586.
16 Bakken LL. Who are physician-scientists' role models? Gender makes a difference. Acad Med. 2005;80:502-506.
17 Bavan B, Chavez J, Saravanabavanandhan B, Li J, MacLaughlan David S. Leadership aspirations among residents in obstetrics and gynecology in the United States: A cross-sectional analysis. BMC Med Educ. 2019;19:332.
18 Berry OO, Sciutto M, Cabaniss D, Arbuckle M. Evaluating an advisor program for psychiatry residents. Acad Psychiatry. 2017;41:486-490.

19 Biondi-Zoccai G, Cerrato E, Peruzzi M, et al. An international survey on taking up a career in cardiovascular research: Opportunities and biases toward would-be physicianscientists. PLoS One. 2015;10:e0131900.
20 Blood EA, Ullrich NJ, Hirshfeld-Becker DR, et al. Academic women faculty: Are they finding the mentoring they need? J Womens Health (Larchmt). 2012;21:1201-1208.
21 Buddeberg-Fischer B, Hoffmann A, Christen S, Weishaupt D, Kubik-Huch RA. Specialising in radiology in Switzerland: Still attractive for medical school graduates? Eur J Radiol. 2012;81:1644-1651.
22 Buddeberg-Fischer B, Stamm M, Buddeberg C, et al. The impact of gender and parenthood on physicians' careersProfessional and personal situation seven years after graduation. BMC Health Serv Res. 2010;10:40.
23 Buddeberg-Fischer B, Stamm M, Buddeberg C, Klaghofer R. Career-success scale-A new instrument to assess young physicians' academic career steps. BMC Health Serv Res. 2008;8:120.
24 Buddeberg-Fischer B, Klaghofer R, Abel T, Buddeberg C. Junior physicians' workplace experiences in clinical fields in Germanspeaking Switzerland. Swiss Med Wkly. 2005;135:19-26.
25 Byington CL, Keenan H, Phillips JD, et al. A matrix mentoring model that effectively supports clinical and translational scientists and increases inclusion in biomedical research: Lessons from the University of Utah. Acad Med. 2016;91:497-502.
26 Caniano DA, Sonnino RE, Paolo AM. Keys to career satisfaction: Insights from a survey of women pediatric surgeons. J Pediatr Surg. 2004;39:984-990.
27 Carapinha R, Ortiz-Walters R, McCracken CM, Hill EV, Reede JY. Variability in women faculty's preferences regarding mentor similarity: A multi-institution study in academic medicine. Acad Med. 2016;91:1108-1118.
28 Carapinha R, McCracken CM, Warner ET, Hill EV, Reede JY. Organizational context and female faculty's perception of the climate for women in academic medicine. J Womens Health (Larchmt). 2017;26:549-559.
29 Chaiyachati KH, Liao JM, Weissman GE, et al. Gender differences in retention and promotion among generalists who graduated from research-intensive fellowships. J Grad Med Educ. 2019;11:535-542.
30 Cochran A, Elder WB, Crandall M, Brasel K, Hauschild T, Neumayer L. Barriers to advancement in academic surgery: Views of senior residents and early career faculty. Am J Surg. 2013;206:661-666.
31 Coleman VH, Power ML, Williams S, Carpentieri A, Schulkin J. Continuing professional development: Racial and gender differences in obstetrics and gynecology residents' perceptions of mentoring. J Contin Educ Health Prof. 2005;25:268-277.
32 Colletti LM, Mulholland MW, Sonnad SS. Perceived obstacles to career success for women in academic surgery. Arch Surg. 2000;135:972-977.
33 DeCastro R, Griffith KA, Ubel PA, Stewart A, Jagsi R. Mentoring and the career satisfaction of male and female academic medical faculty. Acad Med. 2014;89:301-311.

34 Donovan J. A survey of dermatology residency program directors' views on mentorship. Dermatol Online J. 2009;15:1.
35 Doyle-Scharff M, Conley VM. Women faculty in STEM and the value of mentoring in advancing the field. In: Howley AA, Trube MB, eds. Mentoring for the Professions: Orienting Toward the Future. Charlotte, NC: Information Age Publishing Inc; 2014.
36 Files JA, Blair JE, Mayer AP, Ko MG. Facilitated peer mentorship: A pilot program for academic advancement of female medical faculty. J Womens Health (Larchmt). 2008;17:1009-1015.
37 Fleming GM, Simmons JH, Xu M, et al. A facilitated peer mentoring program for junior faculty to promote professional development and peer networking. Acad Med. 2015;90:819-826.
38 Foster SW, McMurray JE, Linzer M, Leavitt JW, Rosenberg M, Carnes M. Results of a gender-climate and work-environment survey at a midwestern academic health center. Acad Med. 2000;75:653-660.
39 Frank-Bertoncelj M, Hatemi G, Ospelt C, et al. Mentoring of young professionals in the field of rheumatology in Europe: Results from an EMerging EUlar NETwork (EMEUNET) survey. Clin Exp Rheumatol. 2014;32:935-941.
40 Fried LP, Francomano CA, MacDonald SM, et al. Career development for women in academic medicine: Multiple interventions in a department of medicine. JAMA. 1996;276:898-905.
41 Gargiulo DA, Hyman NH, Hebert JC. Women in surgery: Do we really understand the deterrents? Arch Surg. 2006;141: 405-408.
42 Han ER, Chung EK, Oh SA, Woo YJ, Hitchcock MA. Mentoring experience and its effects on medical interns. Singapore Med J. 2014;55:593-597.
43 Harris LM, Chaikof EL, Eidt JF. Altering the career choice: Can we attract more women to vascular surgery? J Vasc Surg. 2007;45:846-848.
44 Howell LP, Lyons ML, Thor A, Dandar V. Sex differences in workplace satisfaction and engagement of academic pathologists: Opportunities to enhance faculty diversity. Arch Pathol Lab Med. 2015;139:936-942.
45 Jagsi R, Griffith KA, Jones RD, Stewart A, Ubel PA. Factors associated with success of clinician-researchers receiving career development awards from the National Institutes of Health: A longitudinal cohort study. Acad Med. 2017;92:1429-1439.
46 Kaderli R, Guller U, Muff B, Stefenelli U, Businger A . Women in surgery: A survey in Switzerland. Arch Surg. 2010;145:1119-1121.
47 Kaderli R, Muff B, Stefenelli U, Businger A. Female surgeons' mentoring experiences and success in an academic career in Switzerland. Swiss Med Wkly. 2011;141:w13233.
48 Kaderli RM, Klasen JM, Businger AP. Mentoring in general surgery in Switzerland. Med Educ Online. 2015;20:27528.
49 Kosoko-Lasaki O, Sonnino RE, Voytko ML. Mentoring for women and underrepresented minority faculty and students: Experience at two institutions of higher education. J Natl Med Assoc. 2006;98:1449-1459.

50 Ku MC . When does gender matter? Gender differences in specialty choice among physicians. Work Occup. 2011;38:221-262.
51 Leibenluft E, Dial TH, Haviland MG, Pincus HA. Sex differences in rank attainment and research activities among academic psychiatrists. Arch Gen Psychiatry. 1993;50:896-904.
52 Levinson W, Kaufman K, Clark B, Tolle SW. Mentors and role models for women in academic medicine. West J Med. 1991;154:423-426.
53 Lewis V, Martina CA, McDermott MP, et al. A randomized controlled trial of mentoring interventions for underrepresented minorities. Acad Med. 2016;91:994-1001.
54 Lightner DJ, Terris MK, Tsao AK, Naughton CK, Lohse CM. Status of women in urology: Based on a report to the Society of University Urologists. J Urol. 2005;173:560-563.
55 Mason BS, Ross W, Ortega G, Chambers MC, Parks ML. Can a strategic pipeline initiative increase the number of women and underrepresented minorities in orthopaedic surgery? Clin Orthop Relat Res. 2016;474:1979-1985.
56 Mayer AP, Blair JE, Ko MG, Patel SI, Files JA. Long-term follow-up of a facilitated peer mentoring program. Med Teach. 2014;36:260-266.
57 Mayer KL, Perez RV, Ho HS. Factors affecting choice of surgical residency training program. J Surg Res. 2001;98:71-75.
58 Morrison LJ, Lorens E, Bandiera G, et al; Faculty Development Committee, Department of Medicine, Faculty of Medicine, University of Toronto. Impact of a formal mentoring program on academic promotion of Department of Medicine faculty: A comparative study. Med Teach. 2014;36:608-614.
59 Neumayer L, Konishi G, L'Archeveque D, et al. Female surgeons in the 1990s. Academic role models. Arch Surg. 1993;128:669-672.
60 Ochberg RL, Barton GM, West AN. Women physicians and their mentors. J Am Med Womens Assoc (1972). 1989;44:123-126.
61 Osborn EH, Ernster VL, Martin JB. Women's attitudes toward careers in academic medicine at the University of California, San Francisco. Acad Med. 1992;67:59-62.
62 Osborn VW, Doke K, Griffith KA, et al. A survey study of female radiation oncology residents' experiences to inform change. Int J Radiat Oncol Biol Phys. 2019;104:999-1008.
63 Palepu A, Friedman RH, Barnett RC, et al. Junior faculty members' mentoring relationships and their professional development in U.S. medical schools. Acad Med. 1998;73:318-323.
64 Pololi LH, Evans AT, Civian JT, et al. Mentoring faculty: A US national survey of its adequacy and linkage to culture in academic health centers. J Contin Educ Health Prof. 2015;35:176-184.
65 Rohde RS, Wolf JM, Adams JE. Where are the women in orthopaedic surgery? Clin Orthop Relat Res. 2016;474:1950-1956.
66 Schrager S, Kolan A, Dottl SL. Is that your pager or mine: A survey of women academic family physicians in dual physician families. WMJ. 2007;106:251-255.
67 Shollen SL, Bland CJ, Finstad DA, Taylor AL. Organizational climate and family life: How these factors affect the status of women
faculty at one medical school. Acad Med. 2009;84:87-94.
68 Shortell CK, Cook C. Importance of genderspecific role models in vascular surgery. Vascular. 2008;16:123-129.
69 Siddle JP, Ryckman SN, Hobgood CD, Kline JA. Positive and negative influences on female first authorship emergency medicine research. Acad Emerg Med. 2019;26:327-330. Stamm M, Buddeberg-Fischer B. The impact of mentoring during postgraduate training on doctors' career success. Med Educ. 2011;45:488-496.
71 Stephens EH, Goldstone AB, Fiedler AG, et al. Appraisal of mentorship in cardiothoracic surgery training. J Thorac Cardiovasc Surg. 2018;156:2216-2223.
72 Tosi LL, Mankin HJ. Ensuring the success of women in academic orthopaedics. Clin Orthop Relat Res. 1998;356:254-263.
73 Varkey P, Jatoi A, Williams A, et al. The positive impact of a facilitated peer mentoring program on academic skills of women faculty. BMC Med Educ. 2012; 12:14.
74 Von Feldt JM, Bristol M, Sonnad S, Abbuhl S, Scott P, McGowan KL. The brief CV review session: One component of a mosaic of mentorship for women in academic medicine. J Natl Med Assoc. 2009;101:873-880.
75 Wasserstein AG, Quistberg DA, Shea JA. Mentoring at the University of Pennsylvania: Results of a faculty survey. J Gen Intern Med. 2007;22:210-214.
76 Wise MR, Shapiro H, Bodley J, et al. Factors affecting academic promotion in obstetrics and gynaecology in Canada. J Obstet Gynaecol Can. 2004;26:127-136.
77 Zakus P, Gelb AW, Flexman AM. A survey of mentorship among Canadian anesthesiology residents. Can J Anaesth. 2015;62: 972-978.
78 Ayyala MS, Skarupski K, Bodurtha JN, et al. Mentorship is not enough: Exploring sponsorship and its role in career advancement in academic medicine. Acad Med. 2019;94:94-100.
79 Berlingo L, Girault A, Azria E, Goffinet F, Le Ray C. Women and academic careers in obstetrics and gynaecology: Aspirations and obstacles among postgraduate trainees-A mixed-methods study. BJOG. 2019;126:770-777.
80 Bernardi K, Shah P, Lyons NB, et al. Perceptions on gender disparity in surgery and surgical leadership: A multicenter mixed methods study. Surgery. 2020;167: 743-750.
81 Bettis J, Thrush CR, Slotcavage RL, Stephenson K, Petersen E, Kimbrough MK. What makes them different? An exploration of mentoring for female faculty, residents, and medical students pursuing a career in surgery. Am J Surg. 2019;218:767-771.
82 Buddeberg-Fischer B, Vetsch E, Mattanza G. Career support in medicine-Experiences with a mentoring program for junior physicians at a university hospital. Psychosoc Med. 2004;1:Doc04.
83 Carr PL, Gunn C, Raj A, Kaplan S, Freund KM. Recruitment, promotion, and retention of women in academic medicine: How institutions are addressing gender disparities. Womens Health Issues. 2017;27:374-381.

84 Cochran A, Elder WB, Neumayer LA. Characteristics of effective mentorship for academic surgeons: A grounded theory model. Ann Surg. 2019;269:269-274.
85 Dahlke AR, Johnson JK, Greenberg CC, et al. Gender differences in utilization of duty-hour regulations, aspects of burnout, and psychological well-being among general surgery residents in the United States. Ann Surg. 2018;268:204-211.
86 DeCastro R, Sambuco D, Ubel PA, Stewart A, Jagsi R. Mentor networks in academic medicine: Moving beyond a dyadic conception of mentoring for junior faculty researchers. Acad Med. 2013;88:488-496.
87 DeCastro R, Sambuco D, Ubel PA, Stewart A, Jagsi R. Batting 300 is good: Perspectives of faculty researchers and their mentors on rejection, resilience, and persistence in academic medical careers. Acad Med. 2013;88:497-504.
88 Jackson VA, Palepu A, Szalacha L, Caswell C, Carr PL, Inui T. "Having the right chemistry": A qualitative study of mentoring in academic medicine. Acad Med. 2003;78:328-334.
89 Kass RB, Souba WW, Thorndyke LE. Challenges confronting female surgical leaders: Overcoming the barriers. J Surg Res. 2006;132:179-187.
90 Levine RB, Lin F, Kern DE, Wright SM, Carrese J. Stories from early-career women physicians who have left academic medicine: A qualitative study at a single institution. Acad Med. 2011;86:752-758.
91 Levine RB, Mechaber HF, Reddy ST, Cayea D, Harrison RA. "A good career choice for women": Female medical students' mentoring experiences: A multi-institutional qualitative study. Acad Med. 2013;88:527-534.
92 Lin MP, Lall MD, Samuels-Kalow M, et al. Impact of a women-focused professional organization on academic retention and advancement: Perceptions from a qualitative study. Acad Emerg Med. 2019;26:303-316.
93 McNamara MC, McNeil MA, Chang J. A pilot study exploring gender differences in residents' strategies for establishing mentoring relationships. Med Educ Online. 2008;13:7.
94 Roberts SE, Shea JA, Sellers M, Butler PD, Kelz RR. Pursing a career in academic surgery among African American medical students. Am J Surg. 2020;219:598-603.
95 Salas-Lopez D, Deitrick LM, Mahady ET, Gertner EJ, Sabino JN. Women leaders-Challenges, successes, and other insights from the top. J Leadership Stud. 2011;5:34-42.
96 Samuriwo R, Patel Y, Webb K, Bullock A. 'Man up': Medical students' perceptions of gender and learning in clinical practice: A qualitative study. Med Educ. 2020;54:150-161.
97 Sánchez NF, Poll-Hunter N, Spencer DJ, et al. Attracting diverse talent to academia: Perspectives of medical students and residents. J Career Dev. 2018;45: 440-457.
98 Seemann NM, Webster F, Holden HA, et al. Women in academic surgery: Why is the playing field still not level? Am J Surg. 2016;211:343-349.

99 Smith KH, Hallett RJ, Wilkinson-Smith V, et al. Results of the British Society of Gastroenterology supporting women in gastroenterology mentoring scheme pilot. Frontline Gastroenterol. 2019;10: 50-55.
100 Steele MM, Fisman S, Davidson B. Mentoring and role models in recruitment and retention: A study of junior medical faculty perceptions. Med Teach. 2013;35:e1130-e1138.
101 Thackwell N, Chiliza B, Swartz L. Mentorship experiences during registrar training: Reflections of Black African specialists in the Western Cape. Race Ethn Educ. 2018;21:791-807.
102 Thompson-Burdine JA, Telem DA, Waljee JF, et al. Defining barriers and facilitators to advancement for women in academic surgery. JAMA Netw Open. 2019;2: el910228.
103 Elliott BA, Dorscher J, Wirta A, Hill DL. Staying connected: Native American women faculty members on experiencing success. Acad Med. 2010;85:675-679.
104 Lis LD, Wood WC, Petkova E, Shatkin J. Mentoring in psychiatric residency programs: A survey of chief residents. Acad Psychiatry. 2009;33:307-312.
105 Farkas AH, Bonifacino E, Turner R, Tilstra SA, Corbelli JA. Mentorship of women in academic medicine: A systematic review. J Gen Intern Med. 2019;34: 1322-1329.
106 Brown MA, Erdman MK, Munger AM, Miller AN. Despite growing number of women surgeons, authorship gender disparity in orthopaedic literature persists over 30 years. Clin Orthop Relat Res. 2020;478:1542-1552.
107 Hart KL, Frangou S, Perlis RH. Gender trends in authorship in psychiatry journals from 2008 to 2018. Biol Psychiatry. 2019;86:639-646.
108 Lin TR, Kocher NJ, Klausner AP, Raman JD. Longitudinal gender disparity in female urology resident primary authorship at an American Urological Association sectional meeting. Urology. 2017;110: 40-44.
109 Diamond SJ, Thomas CR Jr, Desai S, et al. Gender differences in publication productivity, academic rank, and career duration among U.S. academic gastroenterology faculty. Acad Med. 2016;91:1158-1163.
110 Eloy JA, Svider PF, Cherla DV, et al. Gender disparities in research productivity among 9952 academic physicians. Laryngoscope. 2013;123:1865-1875.
111 Kramer PW, Kohnen T, Groneberg DA, Bendels MHK. Sex disparities in ophthalmic research: A descriptive bibliometric study on scientific authorships. JAMA Ophthalmol. 2019;137:1223-1231.
112 Kibbe MR. Consequences of the COVID-19 pandemic on manuscript submissions by women. JAMA Surg. 2020;155:803-804.
113 Bickel J. Women in medical education. A status report. N Engl J Med. 1988;319:1579-1584.
114 Holliday EB, Jagsi R, Wilson LD, Choi M, Thomas CR Jr, Fuller CD. Gender
differences in publication productivity, academic position, career duration, and funding among U.S. academic radiation oncology faculty. Acad Med. 2014;89: 767-773.
115 Mayer EN, Lenherr SM, Hanson HA, Jessop TC, Lowrance WT. Gender differences in publication productivity among academic urologists in the United States. Urology. 2017;103:39-46.
116 Sonnert G, Holton G. Career patterns of women and men in the sciences. Am Sci. 1996;84:63-71.
117 Ash AS, Carr PL, Goldstein R, Friedman RH. Compensation and advancement of women in academic medicine: Is there equity? Ann Intern Med. 2004;141:205-212.
118 Frank E, Dingle AD. Self-reported depression and suicide attempts among U.S. women physicians. Am J Psychiatry. 1999;156:1887-1894.
119 Schernhammer ES, Colditz GA. Suicide rates among physicians: A quantitative and gender assessment (meta-analysis). Am J Psychiatry. 2004;161:2295-2302.
120 Ly DP, Seabury SA, Jena AB. Divorce among physicians and other healthcare professionals in the United States: Analysis of census survey data. BMJ. 2015;350:h706.
121 Buckley LM, Sanders K, Shih M, Kallar S, Hampton C; Committee on the Status of Women and Minorities, Virginia Commonwealth University, Medical College of Virginia Campus. Obstacles to promotion? Values of women faculty about career success and recognition. Acad Med. 2000;75:283-288.
122 Beasley BW, Simon SD, Wright SM. A time to be promoted. The prospective study of promotion in academia (prospective study of promotion in academia). J Gen Intern Med. 2006;21:123-129.
123 Narayana S, Roy B, Merriam S, et al; on behalf of the Society of General Internal Medicine's Women and Medicine Commission. Minding the gap: Organizational strategies to promote gender equity in academic medicine during the COVID-19 pandemic. J Gen Intern Med. 2020;35:3681-3684.
124 National Institutes of Health. National Research Mentoring Network: The Science of Mentoring, Networking, and Navigating Career Transition Points (U01 Clinical Trial Not Allowed). https://grants.nih.gov/ grants/guide/rfa-files/RFA-rm-18-004.html. Accessed November 22, 2021.
125 National Science Foundation. ADVANCE Awards. https://www.nsf.gov/crssprgm/ advance/awards.jsp. Accessed November 22, 2021.

126 National Research Council. Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty. Washington, DC: National Academies Press; 2010.
127 Laursen SL, Austin AE. StratEGIC Toolkit: Strategies for Effecting Gender Equity and Institutional Change. Boulder, CO: University of Colorado Boulder; 2014. https://www.colorado.edu/eer/research-areas/women-science/strategic-toolkit. Accessed November 22, 2021.

128 Ortiz-Walters R, Eddleston K-A, Simione K. Satisfaction with mentoring relationships: Does gender identity matter? Career Dev Int. 2010;15:100-120.
129 Sosik JJ, Godshalk VM. The role of gender in mentoring: Implications for diversified and homogenous mentoring relationships. J Vocat Behav. 2000;57:102-122.
130 Hoppe TA, Litovitz A, Willis KA, et al. Topic choice contributes to the lower rate of NIH awards to African-American/black scientists. Sci Adv. 2019;5:Eaaw7238.
131 Clark N, Drolet J, Arnouse M, et al. "Melq'ilwiye" coming together in an
intersectional research team: Using narratives and cultural safety to transform Aboriginal social work and human service field education. Pimatisiwin. 2009;7: 291-315.
132 Hankivsky O, Reid C, Cormier R, et al. Exploring the promises of intersectionality for advancing women's health research. Int J Equity Health. 2010;9:5.
133 Benoit C, Hallgrímsdóttir HK. Engendering research on care and care work across different social contexts. Can J Public Health. 2008;99:S7-S10.
134 Steinbugler AC, Press JE, Dias JJ. Gender, race, and affirmative action:

Operationalizing intersectionality in survey research. Gend Soc. 2006;20:805-825.
135 Weavind L, Jobin McGrane TJ. Women mentoring women in academic medicine: Pathways to success. Int Anesthesiol Clin. 2018;56:110-120.

Reference cited only in Figure 1

136 McInnes MDF, Moher D, Thombs BD, et al; the PRISMA-DTA Group. Preferred Reporting Items for a Systematic Review and Meta-Analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA. 2018;319:388-396.
Appendix 1
First author，year
Qualitative studies

둑 \qquad 듣

$$
\begin{aligned}
& \text { Surgery residents and facuilty at } 4 \text { academic surgery } \\
& \text { programs in United States }
\end{aligned}
$$

Female surgical faculty, surgical residents, and aspiring
medical students at a single academic institution

$$
204
$$

$$
36
$$

$$
17
$$

38.0% High
High
High

Junior medical faculty in Switzerland

Not reported
Not reported Not reported
Not reported
Not reported
Not reported

Mean： 45
문

Mean：27；range：
75% of women
were $25-29 ; 25$
were $30-34$
Not reported
Not reported
85\％of men were
$18-349 \%$ were
$>34 ; 6 \%$ missing．
80% of women were
$18-34 ; 10 \%$ were
$>34 ; 10 \%$ missing．

exps oldures

$$
70.7 \%
$$

Questionnaires： 80% ； interviews：85\％ Not reported
Questionnaires：99\％；
interviews：not applicable
$\sim 20 \%$
$\sim 20 \%$
Not reported Not reported 91%
Not reported Not reported Not reported

$$
27.7 \%
$$

Questionnaires： 73% Questionnares．
7,395 ；interviews：

\％டくLて

$$
\varepsilon z
$$

Medical faculty in United States
Female midcareer and senior academic surgeons in United States
NiH K award recipients and mentors in United States

 junior medical faculty in United States Senior medical faculty in United States Junior medical faculty in United States Medical students in United States Leaders of a women－focused academic emergency
medicine organization
Medical residents in United States

```
                                    16
```


Not reported100\％
Questionnaires．
173；focus groups： 48
uб！sep \＆pnas
Mixed methods
Mixed methodsMixed methodsThematic analysis．．．．．．．．．．．．．．．．．．．．Thematic analysisGrounded theoryBuddeberg－Fischer，Cochran， 2019^{84}
Dahlke， 2018^{85}DeCastro， 2013^{86}
DeCastro， 2013^{87}Levine， 2013^{91}

$$
\begin{aligned}
& \text { Johns Hopkins University School of Medicine faculty } \\
& \text { Obste... } \\
& \text { France } \\
& \text { Surge.. }
\end{aligned}
$$

Roberts， 2020^{94}	Thematic analysis	African American medical students interested in surgery at a single academic institution
Salas－Lopez， 2011	Case study	Senior leaders in United States
Samuriwo，2020 ${ }^{96}$	Mixed methods	Female medical students at a single institution United Kingdom
Sánchez， $2018{ }^{97}$	Mixed methods	Residents attending national professional

Not reported
52%
Mixed methodsGrounded theoryGrounded theoryGrounded theoryThematic analysis2004^{82}Carr， 2017^{83}Elliott， 2010Jackson， 2003^{88}Kass， 2006^{89}Levine， 2011^{90}
Not reported
Not reported

Appendix 1 (Continued)							
First author, year	Study design	Population/setting	Sample size	Response rate (\%)	Participant age in years	\% women in sample	Quality assessment
Seemann, $2016{ }^{98}$	Mixed methods	Medical faculty in Canada	81	38\%	2\% were 25-35; 53\% were 36-45; 33% were 46-55; 11% were > 55	100\%	Low
Smith, 2019^{99}	Mixed methods	Female gastroenterology trainees and consultant gastroenterologists	Questionnaires: 19; interviews: 11	Questionnaires: 31\%; interviews: 31\%	Not reported	100\%	Low
Steele, 2013^{100}	Mixed methods	Junior medical faculty in Canada	Focus groups: 8; interviews: 19	Focus groups: 7\%; interviews: 23\%	23\% born between 1945 and 1962; 77\% born after 1963	34%	High
Thackwell, $2018{ }^{101}$	Thematic analysis	Black African medical specialists in South Africa	10	10\%	35	50\%	Low
Thompson-Burdine, 2019^{102}	Thematic analysis	Current and former female surgical faculty at a single academic institution in United States	26	46\%	Range: 32-64	100\%	High
Quantitative studies							
Amonoo, $2019{ }^{13}$	Cross-sectional	Senior residents at an academic medical center in United States	204	62\%	65.2% were $30-39$	47.1\%	Low
Arlow, $2002{ }^{14}$	Cross-sectional	Training program directors, graduating trainees in gastroenterology in United States	Program directors: 176; trainees: 393	Program directors: 80.7\%; trainees: 49.7\%	Not reported	19\% of trainees	Moderate
Athanasiou, $2016{ }^{15}$	Cross-sectional	Professors in the Faculty of Medicine at a public university in United Kingdom.	104	48\%	Not reported	33\%	Moderate
Bakken, 2005^{16}	Cross-sectional	Medical students, postgraduate trainees, clinical instructors, assistant professors from the University of Wisconsin-Madison	124 (95 in analysis)	49.4\%	Not reported	54\%	Moderate
Bavan, $2019{ }^{17}$	Cross-sectional	Obstetrics-gynecology residents in United States	202	4\%	53\% were 25-29; 43\% were 30-34	86\%	Moderate
Berry, $2017{ }^{18}$	Cross-sectional	First-year psychiatry residents at Columbia University/New York Psychiatric Institute	Survey 1: 18/47; survey 2: 38/46	Survey 1: 38\%; survey 2: 83\%	Not reported	Not reported	Moderate
Biondi-Zoccai, $2015{ }^{19}$	Cross-sectional	International cardiovascular researchers (undergraduate, graduate, assistant/associate/ full professors, resident/fellow, consultant)	247 (4 incomplete)	12\%	31-40	31.6\%	Low
Blood, $2012{ }^{20}$	Cross-sectional	Faculty at Harvard Medical School and School of Dental Medicine	1,179	33.5\%	Median: 44 (25th percentile: 38 , 75 th percentile: 52)	100\%	High
Buddeberg-Fischer, 2012^{21}	Cross-sectional	Radiologists in Switzerland	270	39.20\%	29-75	23.7\%	Moderate
Buddeberg-Fischer, 2005^{24}	Cross-sectional	Medical school graduates in Switzerland	497	Not reported	23-44	54.7\%	High
Buddeberg-Fischer, 201022	Cross-sectional	Medical school graduates in Switzerland	579	81.4\%	Mean: 35.1; range: 31-50	50.4\%	Moderate
Buddeberg-Fischer, 2008^{23}	Cross-sectional	Medical school graduates in Switzerland	406	Not reported	Mean: 33.2; range: 29-47	51.7\%	Moderate

Appendix 1
Population/setting research-intensive fellowship in United States, graduates
Senior residents and early-career faculty at 8 academic medical centers in United States
Obstetrics-gynecology residents in United States Surgeons at 1 academic medical center in United

$1,275(1,227$
sample) 53

 Non (mean): 58 Moderate Moderate Moderate Moderate | |
| :--- |
| |
| | Low

Appendix 1 (Continued)							
First author, year	Study design	Population/setting	Sample size	Response rate (\%)	Participant age in years	\% women in sample	Quality assessment
Byington, 2016^{25}	Retrospective cohort	Junior faculty at the school of medicine and health sciences at the University of Utah	20	Not reported	Not reported	53\%	Unclear
Caniano, $2004{ }^{26}$	Cross-sectional	Pediatric surgeons in North America	75	79\%	$\leq 44,45-55,>55$	100\%	Moderate
Carapinha, $2017{ }^{28}$	Cross-sectional	Faculty from 13 medical schools in United States	3,127	39\%	$\leq 44,45-55,>55$	100\%	High
Carapinha, $2016{ }^{27}$	Cross-sectional	Faculty from 13 medical schools in United States	3,127 (3,100 met criteria)	39\%	$\leq 44,45-55,>55$	100\%	High
Chaiyachati, 2019^{29}	Cross-sectional	Generalists in United States, graduates of research-intensive fellowship	162	51\%	Not reported	64\%	Moderate
Cochran, 201330	Cross-sectional	Senior residents and early-career faculty at 8 academic medical centers in United States	Faculty: 69; residents: 85	53\%	Residents mean (SD): 35.6 (7.2); faculty mean (SD): 44.1 (5.9)	Residents: 51.76\%; faculty: 37.6\%	Moderate
Coleman, 2005^{31}	Cross-sectional	Obstetrics-gynecology residents in United States	4,590	97.2\%	Not reported	75\%	Moderate
Colietti, $2000{ }^{32}$	Cross-sectional	Surgeons at 1 academic medical center in United States	54	47\%	Not reported	17\%	Moderate
DeCastro, 2014^{33}	Cross-sectional	Clinician-researchers with NiH KO8 and K23 awards in United States	$\begin{aligned} & 1,275(1,227 \\ & \text { sample) } \end{aligned}$	75\%	Not reported	45.56%	Moderate
Donovan, 2009^{34}	Cross-sectional	Program directors in dermatology in United States	53	49\%	Not reported	17\%	Moderate
Doyle-Scharff, $2014{ }^{35}$	Cross-sectional	Psychiatry chairs at academic institutions in United States	45	Women: $10 / 12(83 \%)$; men: 33/97 (34\%)	Women (mean): 54.8; Men (mean): 58.0	27\%	Moderate
Files, $2008{ }^{36}$	Cross-sectional	Internists in internal medicine at 1 institution in United States	4	Not reported	Not reported	100\%	Moderate
Fleming, $2015{ }^{37}$	Case series	Early-career junior faculty in the Department of Pediatrics at Vanderbilt University School of Medicine	104	45\%	Not reported	66\%	Moderate
Foster, 2000^{38}	Cross-sectional	Faculty at the University of Wisconsin Medical School	507 (489 complete)	61%	Not reported	26\%	Moderate
Frank-Bertoncelj, 2014^{39}	Cross-sectional	Young clinicians and researchers in rheumatology in Europe	248	Not reported	Median: 33	69\%	Moderate
Fried, 199640	Case series	Medical faculty at Johns Hopkins University	127	68\%	Not reported	24\%	Moderate
Gargiulo, 2006^{41}	Cross-sectional	Residents in surgery and obstetrics-gynecology and medical students at the University of Vermont	141	47\%	Not reported	63.8\%	Low
Han, $2014{ }^{42}$	Cross-sectional	Interns during medical internship in South Korea	61	70\%	With mentors mean (SD): 26.5 (2.2); without mentors: $26.7 \text { (2.0) }$	15.4\%	Moderate
Harris, 2007^{43}	Cross-sectional	Medical students from 3 academic vascular residency training programs in United States	140	38.9\%	Not reported	100\%	Moderate
Howell, $2015{ }^{44}$	Cross-sectional	Faculty pathologists at a sample of medical schools in United States; APC members	Faculty: 9,600; APC members: 104	Faculty: 61.7%; APC members: 55\%	63\% were 46-65	Faculty: 40%; APC members: 8.6\%	Moderate
Jagsi, $20174{ }^{45}$	Cohort	Clinician-researchers receiving K08 and K23 awards in United States	1,275	75%	40	46.2\%	High

Appendix 1
(Continued)

Moderate
oderate
od.......
 둦
 48\% Moderate

512
189
189
Unclear
MSQ survey
10,508; GQ
surveys: 10,502
1923 :

Underrepresented graduate students, fellows, 150
Underrepresented graduate students, fellows,
junior faculty mentees, and medical faculty
Female academic urologists trained in United States 121 Medical students completing an orthopedic surgery 118 ...
Female physicians at the instructor or assistant 16 professor rank from a number of departments and disciplines at the Mayo Clinic in Arizona and Florida General surgery residency graduates at the

Full-time medical faculty at the University of Toronto 611

$$
\begin{aligned}
& \text { Members of the Association of Women Surgeons } \\
& \\
& \text { Physician members of the American Medical } \\
& \text { Women's.................... } \\
& \text { Medsociation }
\end{aligned}
$$ house staff. 15\%, postdoctoral fellows. 21\%; junior faculty: 57.5%

74% 45\%

59\%

Not reported Mean: 39.6; range:
$25-84$ Not reported Not reported

United States mentors in New York University of California, Davis
.....

Randomized controlled trial

 Coss-sectional Retrospective observational cohortMayer, $2014^{56} \quad$ Retrospective cohort

Mayer, $20011^{\text {57 }} \quad$ Cross-sectional Morrison, 2014^{58} Retrospective cohort Cross-sectional
Ochberg, 198960 \quad Cross-sectional
Osborn, 1992

Medical students, , house staff, postdoctoral filiows, Medical students:
and junior faculty at the University of California, and junior faculty at the University of California,
San Francisco School of Medicine

Female radiation oncology residents in United States 125

Cross-sectional
186; postdoctora
fellows: 174; junior faculty: 115

Cross-sectional

Osborn, 1992^{61}

Osborn, 201962

Appendix 1 (Continued)							
First author, year	Study design	Population/setting	Sample size	Response rate (\%)	Participant age in years	\% women in sample	Quality assessment
Palepu, $1998{ }^{63}$	Cross-sectional	Medical faculty at 24 randomly selected medical schools in United States	1,302	43\%	Mean among junior faculty with mentors: 41; mean among junior faculty without mentors: 45	54.6\%	High
Pololi, 2015^{64}	Cross-sectional	Faculty from a random sample of medical schools in United States	2,178	52\%	Mean: 49	34\%	High
Rohde, $2016{ }^{65}$	Cross-sectional	Female medical student, resident, and practicing orthopedic surgeons in United States	232	42\%	Not reported	100\%	Moderate
Schrager, $2007{ }^{66}$	Cross-sectional	Female academic family physicians in United States	159	13\%	>30	100\%	Low
Shollen, $2009{ }^{67}$	Cross-sectional	Female full-time faculty at the University of Minnesota Medical School	354	57\%	Not reported	31\%	Moderate
Shortell, $2008{ }^{68}$	Cross-sectional	Vascular surgeons	135	5.6\%	25 to > 46	12.5\%	Low
Siddle, $2019{ }^{69}$	Cross-sectional	Authors of emergency medicine research in United States	276	63\%	55% women under 40	36\%	Moderate
Stamm, $2011{ }^{\text {co }}$	Cohort	Medical school graduates in clinical specialist training in Switzerland	711 at baseline and 326 at fifth follow-up	46\%	Mean: 35.2; range: 32-49	52.8%	Moderate
Stephens, $2018{ }^{71}$	Cross-sectional	Surgery residents in United States	288	78\%	Not reported	25\%	Moderate
Tosi, 199872	Cross-sectional	Faculty and residents in academic orthopedics in United States and Canada	45 in panel	17\% for panel	84\% were < 45	Survey: 100\%; panel: 47\%	Moderate
Varkey, 2012^{73}	Cohort	Female faculty (instructor or assistant professor) in the Department of Medicine at the Mayo Clinic in Rochester, Minnesota	19 mentees in 5 peer groups	17.9\%	Not reported	100\%	Moderate
Von Feldt, 2009^{74}	Cohort	Junior medicine faculty at the University of Pennsylvania	Mentees: 61; mentors: 63	67\%	Not reported	100\%	Low
Wasserstein, 200775	Cross-sectional	Faculty at the University of Pennsylvania School of Medicine	1,046	73\%	Not reported	25\%	Moderate
Wise, $2004{ }^{\text {76 }}$	Cohort	Faculty in departments of obstetrics-gynecology at 15 medical schools in Canada	Responded: 376; used: 299	72\%	Mean: 43	37\%	Moderate
Zakus, $2015{ }^{77}$	Cross-sectional	Anesthesiology residency program directors; residents in anesthesiology in Canada	Program directors: 13; residents: 203	Program directors: 76\%; residents: 39\%	Mostly 25-34	39\%	Moderate

[^1]
[^0]: Please see the end of this article for information about the authors.

 Correspondence should be addressed to Mary R. Shen, Department of Surgery, University of Michigan, 1500 E Medical Dr., Ann Arbor, MI 48109; email: shenma@med.umich.edu; Twitter: @mary_shen.

[^1]: Abbreviations: NIH, National Institutes of Health; MSQ, Matriculating Student Questionnaire; GQ, Graduation Questionnaire; SD, standard deviation; MS1, first-year medical student; MS4, fourth-year medical student; APC, Association of Pathology Chairs.

