Brain connectivity changes revealed in individuals with pre-clinical Alzheimer’s Disease
Accumulation of amyloid-β and tau proteins are related to brain network changes years before symptoms
Safe Care CommitmentGet the latest news on COVID-19, the vaccine and care at Mass General.Learn more
Press Release5 Minute ReadNov | 11 | 2021
Ghazaleh Sadri-Vakili, PhDTargeting tau with a new class of small molecules can reverse the ALS-induced changes in mitochondria’s shape and function.
BOSTON – New research provides a better understanding of the mechanisms behind the development of amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, and points to a potential treatment strategy. The work was led by investigators at the Healey Center for ALS at Massachusetts General Hospital (MGH) and is published in Molecular Neurobiology.
ALS, a degenerative condition without a cure, attacks brain and spinal cord nerve cells to progressively affect individuals’ ability to move, speak, eat, and even breathe. Previous studies have implicated dysfunction within mitochondria, which generate energy within cells, as playing an important role in the development of ALS. Also, studies in Alzheimer’s disease have linked changes in mitochondrial function to interactions between an abnormal form of tau, which accumulates in the brains of patients with Alzheimer’s disease, and a mitochondrial protein called dynamin-related protein 1 (DRP1). Piecing these bits of information together, Ghazaleh Sadri-Vakili, PhD, director of the NeuroEpigenetics Laboratory at the MassGeneral Institute for Neurodegenerative Disease and the Healey Center for ALS at MGH, and her colleagues examined whether interactions between this abnormal tau with DRP1 might also promote mitochondrial dysfunction in ALS, and whether reducing tau could be a novel and promising therapeutic approach to fight the disease.
The team found that in brain tissue from deceased patients who had ALS, the abnormal form of tau is present, is located where tau is not normally found, and interacts with DRP1. When cells were grown in contact with deceased ALS patients’ brain tissue that contained abnormal tau, the cells’ mitochondria fragmented and oxidative stress increased. Importantly, reducing tau with a specific degrader reversed these effects, reducing mitochondrial fragmentation and lowering oxidative stress.
“We demonstrated for the first time that targeting tau with a new class of small molecules that selectively degrade it can reverse the ALS-induced changes in mitochondria’s shape and function, highlighting tau as a potential therapeutic target,” says Sadri-Vakili.
Co-authors include Tiziana Petrozziello, Evan A. Bordt, Alexandra N. Mills, Spencer E. Kim, Ellen Sapp, Benjamin A. Devlin, Abigail A. Obeng-Marnu, Sali M.K. Farhan, Ana C. Amaral, Simon Dujardin, Patrick M. Dooley, Christopher Henstridge, Derek H. Oakley, Andreas Neueder, Bradley T. Hyman, Tara L. Spires-Jones, Staci D. Bilbo, Khashayar Vakili, Merit E. Cudkowicz, James D. Berry, Marian DiFiglia, M. Catarina Silva, and Stephen J. Haggarty.
Funding for the study was provided by the Judith and Jean Pape Adams Charitable Foundation; the Byrne Family Endowed Fellowship in ALS Research; the ALS Canada Tim E. Noël Postdoctoral Fellowship; the Alzheimer’s Association; the Jack Satter Foundation; the Dr. and Mrs. E. P. Richardson, Jr Fund for Neuropathology at MGH; the Alzheimer’s Association/Rainwater Foundation Tau Pipeline Enabling Program; and the Stuart & Suzanne Steele MGH Research Scholars Program.
About the Massachusetts General Hospital
Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The Mass General Research Institute conducts the largest hospital-based research program in the nation, with annual research operations of more than $1 billion and comprises more than 9,500 researchers working across more than 30 institutes, centers and departments. In August 2021, Mass General was named #5 in the U.S. News & World Report list of "America’s Best Hospitals."
Accumulation of amyloid-β and tau proteins are related to brain network changes years before symptoms
The independent Data and Safety Monitoring Board (DSMB) recommended stopping the zilucoplan regimen in the HEALEY ALS Platform Trial after a pre-scheduled interim analysis demonstrated futility.
First of its kind trial design expedites drug testing and expands patient access to new investigational products.
First participants for the investigational product SLS-005 (trehalose injection, 90.5 mg/mL for intravenous infusion).
The Cullen Education and Research Fund (CERF) announced the recipients of the first CERF Medical Engineering Prize for ALS Research: Leigh Hochberg, MD, PhD; Conor Walsh, PhD; and Sabrina Paganoni, MD, PhD.
Drug candidates that enter the platform trial are selected by a group of expert ALS scientists and members of the Healey & AMG Center Therapy Evaluation Committee. Enrollment is now complete for the fourth investigational treatment (pridopidine) in the ongoing study.