About Dr. Yarmush

Dr. Yarmush

Brief Biography

Professor Yarmush is the Founding Director of the Center for Engineering in Medicine & Surgery (CEMS). He is an internationally recognized expert in several areas of biotechnology and bioengineering including tissue engineering and regenerative medicine, applied immunology, biopreservation, genomics and proteomics technologies, metabolic engineering, and bioengineered microsystems and biomedical devices.

Over the last 30 years, Dr. Yarmush has published over 550 refereed journal articles, has mentored >69 graduate students and >120 postdoctoral fellows, and has taught a spectrum of courses from molecular genetics and immunology to thermodynamics and transport phenomena.

More than 70 of his former fellows have gone on to successful careers in academia both here and abroad, and many others have gone on to become leaders in the biotechnology and medical device industries. A frequent invited speaker at major conferences and institutions, and winner of over 30 local and national awards, Professor Yarmush’s investigative activities encompass both basic and applied research and have resulted in numerous patents and the formation of >10 start-up companies. He has also served as editor of several journals, most notably the Annual Review of Biomedical Engineering (ARBME), which has consistently been either number one or two in impact factor among its peer group of Biomedical Engineering journals.

Research Summary

The research activities in Professor Yarmush’s laboratory broadly address both scientific and engineering aspects of various challenging areas in biotechnology and clinical medicine.

Among his current projects are the following: new nanoparticle technology to enhance wound healing; microfabricated tissue-on-a-chip-systems for disease modeling and drug/environmental toxin testing; pulsed electric field techniques to promote scarless wound healing and wound disinfection; organ re-engineering through recellularization of decellularized scaffolds and revitalization perfusion of marginal organs; supercooling and partial freezing preservation of cells, tissues, and organs; encapsulated mesenchymal stem cells for treatment of spinal cord injury, osteoarthritis, and traumatic brain injury; and development of automated robotic venipuncture devices with point-of-care capabilities.

Success in tackling these projects is enabled using state-of-the-art techniques that include microfabrication and nanotechnology; physical biochemistry; genomics, proteomics and genetic engineering; cell biology and tissue engineering; advanced microscopic imaging; physiologic instrumentation; animal studies; and numerical simulation.


  • BA, Biology/Chemistry, Yeshiva U, 1975
  • PhD, Biophysical Chemistry, Rockefeller University, 1979
  • MD, Medicine, Yale University, 1983
  • PhD Studies, Chemical Engineering, MIT 1982-84
  • Postdoc Immunology, NIH, 1978-1979

Research Thrusts