Explore This Lab

Overview

We are a group of neurologists and computer scientists who share the passion for using technology to precisely understand how certain neurologic diseases impact human motor and cognitive function. We believe that capturing high-definition behavior at scale will lead to the discovery of fundamental characteristics of disease that will inform new approaches to therapy development, diagnosis, and management. Our initial focus is on cerebellar ataxia, Parkinson’s disease, and neurodegenerative disease in general.

We are deeply thankful to the patients and patient advocates who donate their time to our research program during their visit to Massachusetts General Hospital. Likewise, this work would not be possible without the generous support from the Ataxia-Telangiectasia Children’s Project (A-TCP) and the Mass General Department of Neurology.

Research Positions

We are currently seeking a Postdoctoral Fellow in Machine Learning. Learn more and apply at the main Mass General Brigham job site.

We are always looking for individuals with a strong quantitative and algorithmic background as well as a passion for understanding the brain and neurologic disease to lead areas of interest within our group. Contact agupta@mgh.harvard.edu for more information.

Group Members

Anoopum Gupta, MD, PhD
Anoopum Gupta, MD, PhD
Principal Investigator
Dr. Gupta received his undergraduate degree in Electrical Engineering from Georgia Tech, his medical degree from the University of Pittsburgh School of Medicine, and his PhD in Robotics and the Center for the Neural Basis of Cognition from Carnegie Mellon University’s School of Computer Science. He completed his residency in neurology at the Mass General Brigham/Harvard Medical School Residency Program. Dr. Gupta’s previous research utilized methods in machine learning and signal processing to understand how large populations of neurons in the hippocampus support learning, memory, and decision making.

Adonay Nunes
Post-Doctoral Fellow
Adonay Nunes received his doctoral degree in Biomedical Physiology from Simon Fraser University, Vancouver. His research focused on understanding the underlying oscillatory activity and synchrony of neural ensembles that characterize individuals with Autism and in children born very preterm. During his degree, he used data analysis methods involving parametric statistics and machine learning to model the population and predict their symptom severity. Currently, he is interested in extracting neurodegenerative phenotypes for machine learning classification and prediction by integrating video, wearable, and physiological data recorded during cognitive and motor assessments.

Anna Luddy
Clinical Research Assistant
Anna graduated with a Bachelor of Science degree in Neuroscience from Trinity College in 2020. She hopes to pursue a career in neuropsychology, and is especially interested in health equity, health literacy and working with pediatric populations.
Winnie Ching
Winnie Ching
Clinical Research Assistant
Winnie graduated from the University of Massachusetts Amherst with a Bachelor of Science degree in Psychology with a concentration in Neuroscience and is currently pursuing a Master’s degree in Medical Sciences at Boston University. In our lab, she is working with eye tracking data to better understand oculomotor abnormalities in patients with ataxia.
Jessey Ouillon
Jessey Ouillon
Clinical Research Assistant
Jessey graduated from Carnegie Mellon University in 2016 with a Bachelor of Arts degree in Psychology. She enjoys working with adults and children who have neurological disorders and hopes to contribute to clinical research that can improve healthcare for these individuals. She joined the lab in January 2020.

Collaborators

  • Steven Arnold, MD, Massachusetts General Hospital and Harvard Medical School
  • James Berry, MD, Massachusetts General Hospital and Harvard Medical School
  • Katey Burke, PT, DPT, NCS, Massachusetts General Hospital Institute of Health Professions
  • Zhuoqing (George) Chang, PhD, Electrical and Computer Engineering, Duke University
  • Jean-Francois Daneault, PhD, Department of Kinesiology and Health, Rutgers University
  • Krzysztof Gajos, PhD, Harvard Paulson School of Engineering and Applied Sciences, Harvard University
  • Amanda Guidon, MD, Massachusetts General Hospital and Harvard Medical School
  • Albert Hung, MD, PhD, Neurology, Massachusetts General Hospital and Harvard Medical School
  • Maia Jacobs, PhD, Harvard Paulson School of Engineering and Applied Sciences, Harvard University
  • Sheraz Khan, PhD, Massachusetts General Hospital and Harvard Medical School
  • Sunghoon Ivan Lee, PhD, College of Information and Computer Sciences, University of Massachusetts Amherst
  • Vineet Pandey, PhD, Harvard Paulson School of Engineering and Applied Sciences, Harvard University
  • Guillermo Sapiro, PhD, Electrical and Computer Engineering, Duke University
  • Jeremy Schmahmann, MD, Neurology, Massachusetts General Hospital and Harvard Medical School
  • Christopher Stephen, MD, Massachusetts General Hospital and Harvard Medical School

Alumni

  • Mary Donovan, Clinical Research Coordinator, currently a medical student at Georgetown University
  • Nergis Khan, Clinical Research Coordinator, currently a medical student at Stanford University
  • Karin Knudson, Post-Doctoral Fellow, currently a Senior Data Scientist at Tufts University

Selected Publications

Recent publications include:

Chang Z, Chen Z, Stephen CD, Schmahmann JD, Wu H-T, Sapiro G, Gupta AS (2020): Accurate Detection of Cerebellar Smooth Pursuit Eye Movement Abnormalities via Mobile Phone Video and Machine Learning. Scientific Reports 10, 18641 (2020). doi.org/10.1038/s41598-020-75661-x

Azami H, Arnold SE, Sanei S, Chang Z, Sapiro G, Escudero J, Gupta AS (2019): Multiscale Fluctuation-based Dispersion Entropy and its Applications to Neurological Diseases. IEEE Access. 2019 7:68718-68733. doi:10.1109/ACCESS.2019.2918560.

Jacobs M, Gheihman G, Gajos KZ, Gupta AS (2019): “I think we know more than our doctors:” How online health communities help caregivers manage care teams with limited disease-related expertise. Proceedings of the ACM on Human-Computer Interaction 3, CSCW, Article 159 (November 2019), 22 pages. Summary published at Medium.

Gajos KZ, Reinecke K, Donovan M, Stephen CD, Hung AY, Schmahmann JD, Gupta AS (2019): Computer mouse use captures ataxia and parkinsonism, enabling accurate measurement and detection. Movement Disorders. doi:10.1002/mds.27915